Data Adaptive Estimation of the Treatment Specific Mean in Causal Inference

R-package *cvDSA*

Yue Wang

Division of Biostatistics

Nov. 2004
Outlines

Introduction: Data structure and Marginal Structural Model.

Estimation Road map

- Choice of loss function;
- Generating candidate estimators;
- Selection among candidate estimators: cross-validation;
- D/S/A algorithm for computing the optimal index set;
- Selection of nuisance parameter models.

R-package cvDSA

- Data-adaptive estimation for nuisance parameter model (cvGLM());
- Data-adaptive estimation for the Marginal structural model (cvMSM()).
Data structure and Marginal Structural Model

- Full data structure.
 \[X = ((Y_a, a \in A), W) \sim F_{X,0} \]
 \(Y_a \) is the counterfactual outcome, \(a \) represents treatment, \(W \) represents the baseline covariates.

- Observed data structure.
 \[O = (A, Y_A, W) \sim P_0 = P_{F_{X,0},g_0} \]
 \(A \) is a random variable denoting which treatment is assigned, \(Y_A \) is the outcome under treatment \(A \).

- Marginal Structural Model (MSM).
 Estimate treatment specific mean \(E(Y_a|V) \) as a function of \(a \) and \(V \), where \(V \subset W \).
 Randomization assumption (RA): treatment is randomly
assigned within strata of W, $g_0(a|X) = g_0(a|W)$ for all $a \in A$.

- Defining the parameter of interest in terms of a loss function.

Let $\psi(a, v) = E(Y_a|V)$ be the parameter of interest. The true parameter value ψ_0 is the one maps the true data population, $\psi_0 \equiv \psi(F_{X,0})$. It is defined in terms of a loss function, $L(X, \psi)$, as the minimizer of the expected loss, or risk. That is, ψ_0 is

$$\psi_0 = \arg\min_{\psi \in \Psi} E(L(X, \psi))$$

- Full data loss function.

$$L(X, \psi) = \sum_{a \in A} (Y_a - \psi(a, v))^2$$

The true model ψ_0 is the minimizer of the expectation of the loss function.
Estimation Road Map:
Choices of loss function

Choices of mapping the full data loss function

The three mappings of the full data loss function have the same expectation as the full data loss function.

1. G-computational mapping

\[L_{G_{\text{comp}}}(O, \psi|\eta_0) = IC(O|Q_0, L(X, \psi)) \]
\[= \sum_{a \in A} E((Y - \psi(A, V))^2|A = a, W) \]
\[= \sum_{a \in A} \{E(Y^2|A = a, W) - 2E(Y|A = a, W)\psi(a, v) + \psi(a, v)^2\} \]
2. IPTW mapping

\[
L_{IPTW}(O, \psi | \eta_0) = IC(O|g_0, L(X, \psi)) \\
\equiv \frac{(Y - \psi(A, V))^2}{g(A|X)} g(A|V);
\]

3. Double Robust mapping (by van der Laan and Robins (2002))

\[
L_{DR}(O, \psi | \eta_0) = IC(O|Q_0, g_0, L(\cdot, \psi)) \\
= \frac{(Y - \psi(A, V))^2}{g(A|X)} g(A|V) \\
- \frac{g(A|V)}{g(A|X)} E \left[(Y - \psi(A, V))^2 | A, W \right] \\
+ \sum_{a \in A} E \left[(Y - \psi(A, V))^2 | A = a, W \right] g(a|V),
\]
Estimation Road Map: Generating candidate estimators

- The minimum empirical risk estimator

\[\arg\min_{\psi \in \Psi} \int L(o, \psi | \nu_n) dP_n(o) \]

typically suffers from the curse of dimensionality due to the size of \(\Psi \). A general approach is to construct a sequence or collection of subspaces approximating the whole parameter space \(\Psi \), a so called sieve, and select the actual subspace whose corresponding minimum empirical risk estimator minimizes an appropriately penalized empirical risk or a cross-validated empirical risk.
Let \(\{ \Psi_k \} \) be a sieve and \(\Psi_k \subset \Psi \), define

\[
\Psi = \left\{ g \left(\sum_{j \in I} \beta_j \phi_j \right) : I \subset I, \beta \right\},
\]

where \(\phi_j \) is a tensor product of basis functions. Choose univariate function \(e_k(W) = W^k \) as the basis function, \(I \) is a vector which represents for a polynomial.

Given a vector \(\vec{p} = (p_1, \ldots, p_d) \in \mathbb{N}^d \), the tensor product identified by \(\vec{p} \) is:

\[
\phi_{\vec{p}} = e_{p_1}(W_1) \times \ldots \times e_{p_d}(W_d) = W_1^{p_1} \ldots W_d^{p_d}.
\]
Define a collection of subspaces as $\Psi_s \subset \Psi$, indexed by an s. Such subspaces are obtained by restricting the subsets I of basis functions to be contained in $\mathcal{I}_s \subset \mathcal{I}$, and/or restricting the values for the corresponding coefficients $(\beta_{\vec{p}} : \vec{p} \in I)$ to be contained in $B_{I,s} \subset B_I$:

$$\Psi_s = \{ \psi_{I,\beta} : I \in \mathcal{I}_s \subset \mathcal{I}, \beta \in B_{I,s} \subset B_I \}.$$
For each \(s \), compute (or approximate as best as one can) the minimizer of the empirical risk over the subspace \(\Psi_s \):

\[
\hat{\Psi}_s(P_n) \equiv \operatorname{argmin}_{\psi \in \Psi_s} \int L(o, \psi \mid v_n) dP_n(o).
\]

- Step 1. Given each possible subset \(I \in I_s \) of basis functions, compute the corresponding minimum risk estimator of \(\beta \):

\[
\beta(P_n \mid I, s) \equiv \operatorname{argmin}_{\beta \in B_{I,s}} \int L(o, \psi_{I,\beta} \mid v_n) dP_n(o);
\]

For each \(I \), this results in an estimator
\[
\psi_{I,s,n} = \hat{\Psi}_{I,s}(P_n) \equiv \psi_{I,\beta}(P_n | I, s).
\]

- Step 2. Minimize the empirical risk over all allowed subsets \(I \in I_s \) of basis functions. Specifically, one needs to minimize the function \(f_E : I_s \to \mathbb{R} \) defined by

\[
f_E(I) \equiv \int L(o, \hat{\Psi}_{I,s}(P_n)) dP_n(o).
\]
Estimation Road Map: Selection among candidate estimators: cross-validation

Select \(s \) with cross-validation

Cross-validation: the observations in the training set \((P^0) \) are used to estimate the parameters and the observations in the validation set \((P^1) \) are used to access performance of the estimators. The cross-validation selector is the chosen to have the best performance on the validation sets.

Given an estimator \(\widehat{\gamma} \) of the nuisance parameter \(\nu_0 \), the cross-validation selector of \(s \) is now defined as follows:

\[
\hat{S}(P_n) \equiv \arg\min_s E_{B_n} \int L(o, \hat{\Psi}_s(P^0_{n,B_n}) \mid \hat{\gamma}(P^0_{n,B_n})) dP^1_{n,B_n}(o).
\]
Estimation Road Map: D/S/A algorithm for computing the optimal index set

The goal is to estimate

\[I_0(P_n) \equiv \arg \min_{I \in \mathcal{I}} \int L(o, \hat{\Psi}_I(P_n) | v_0) dP_0(o). \]

Estimation of \(I_0(P_n) \) involves a two-stage procedure:

- Find the best choice within \(\mathcal{I}_s \) using the empirical risk function, to find the best choice within \(\mathcal{I}_s \);
- Find the best choice of \(s \) using the cross-validated risk function.
The D/S/A algorithm (Sinisi and van der Laan (2004)) maps the current index set $I^0 \in \mathcal{I}$ of size k into three collections of index sets, namely, deletion set $DEL(I^0)$, substitution set $SUB(I^0)$, and addition set $ADD(I^0)$, of size $k - 1$, k, and $k + 1$, respectively. Let $I^0 = \{\vec{p}^0_1, \ldots, \vec{p}^0_k\}$ denote the current index set, where $\vec{p}^0_i \in \mathbb{N}^d$, $i = 1, 2, \ldots, k$:

- $DEL(I^0)$ is a set of index sets I where the i^{th} vector \vec{p}^0_i is deleted from I^0, for $i = 1, 2, \ldots, k$;
- $SUB(I^0)$ is a set of index sets I where the i^{th} vector \vec{p}^0_i is substituted by one of the new vectors $\vec{p}_{ij} = \vec{p}^0_i + \delta e_j$, where $\delta = \{-1, 1\}$, $j = 1, 2, \ldots, d$, for $i = 1, 2, \ldots, k$;
- $ADD(I^0)$ is a set of index sets I obtained by adding one of the unit vector e_j or one of the new vectors \vec{p}_{ij} in $SUB(I^0)$ to I^0, $j = 1, 2, \ldots, d$, for $i = 1, 2, \ldots, k$.
Deletion/Substitution/Addition Algorithm
Deletion
\[I^- = \arg \min_{I \in \text{Del}(I^0)} f(I) \]

- \[f(I^-) < f(I^0) \]
 - \[Y \] \[I^0 = I^- \]
 - \[N \]

Substitution
\[I^\text{=} = \arg \min_{I \in \text{Sub}(I^0)} f(I) \]

- \[f(I^-) < f(I^0) \]
 - \[Y \] \[I^0 = I^\text{=} \]
 - \[N \]

Addition
\[I^+ = \arg \min_{I \in \text{Add}(I^0)} f(I) \]

- \[f(I^0) - f(I^+) < \delta \text{ or size}>\text{user supplied size} \]
 - \[Y \] \[I^0 = I^+ \]
 - \[N \]

Stop
Estimation Road Map: Selection of nuisance parameter models

- Selecting the nuisance parameter models with CV/DSA algorithm

\[\nu = \{ g(A|V), g(A|W), Q(Y|A, W), Q(Y^2|A, W) \} \]

Since these nuisance parameters are either observed data densities or regressions, we can estimate them with the loss-based estimation approach based on either the squared error loss function, or the minus log loss function.
\textit{R}-package \texttt{cvDSA}

- \texttt{cvGLM()}: Selecting/Fitting Linear Models;
- \texttt{cvMSM()}: Selecting/Fitting Marginal Structural Models;
- \texttt{create.obs.data()}: Generating a observed data set;
- \texttt{check.ETA()}: Checking ETA Assumption for MSM.
\textit{R}-package cvDSA

Example 1. Generating an observed data set.

Let sample size $N = 2000$, $W = \{W_1, W_2\}$, $W_1 \sim U(0, 1)$, $W_2 \sim U(0, 1)$, the treatment model is

$$g(A|W) = \logit^{-1}(1 - W_1 + W_2),$$

the F_x-part model is

$$Q(Y|A, W) = 1 + 2A + 1.5W_1 + W_2 - W_1 \times W_2.$$
Code:

n <- 1000
w1 <- runif(n, 0, 1);
w2 <- runif(n, 0, 1);
w <- cbind(w1=w1, w2=w2);

model.aw <- list(formula=list(c(1,0), c(0,1)),
 coef=c(1,-1,1));
model.yaw <- list(formula=list(c(1,0,0), c(0,1,0),
 c(0,0,1), c(0,1,1)),
 coef=c(1, 2, 1.5, 1, -1));

obs.data <- create.obs.data(w, afamily='binomial',
yfamily='gaussian', model.yaw, model.aw)
Example 2. selecting the nuisance parameter models.

Code:

```r
a <- obs.data$a
cv.model.aw <- cvGLM(y = a, x = w, ncv = 5, yx.model = list(Size = 3, Order = c(2, 2), Int = 2), myfamily = 'binomial', printout = T, detail = T)

y <- obs.data$y
cv.model.yaw <- cvGLM(y = y, x = cbind(a, w), ncv = 5, yx.model = list(Size = 5, Order = c(1, 2, 1), Int = 2), printout = T)
```
Result:

\[g(A|W) : \]

CV selects: size = 2, interactions = 2

with min.risk: 0.5584379

$\text{Formula [1] "Intercept + w1 + w2"}$

Coefficients

\[
\begin{array}{ccc}
\text{(Intercept)} & w1 & w2 \\
1.204914 & -1.356494 & 1.080563
\end{array}
\]
\[E(Y|A,W) : \]

CV selects: size = 4, interactions = 2 with min.risk: 1.018344

$\text{Formula [1] } "\text{Intercept} + a + w1 + w2 + w1* w2"$

Coefficients

<table>
<thead>
<tr>
<th>(Intercept)</th>
<th>a</th>
<th>w1</th>
<th>w2</th>
<th>w1* w2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.959001</td>
<td>2.002093</td>
<td>1.475317</td>
<td>1.089650</td>
<td>-1.026595</td>
</tr>
</tbody>
</table>
Example 3. selecting the marginal structural model.

Code:

```r
a<-obs.data$a

msm.iptw <- cvMSM(y=y, a=a, v=w1, w=w, data=obs.data, model.msm=list(Size=3, Order=c(1,2), Int=1),
model.av=list(Model=list(c(1))),
model.aw=list(Model=NULL, Size=3,Int=2),
mapping='IPTW', fitting='IPTW', stable.wt=T)
```
Result:

g(A|W):

CV selects: size = 2 , interactions = 2
with min.risk: 0.5584379

$\text{Formula [1] "Intercept + w1 + w2"}$

Coefficients

(Intercept) w1 w2
1.204914 -1.356494 1.080563

MSM \(E(Y_a|a, V) \)

CV selects: size = 2 with min.risk: 1.056349

IPTW estimator:

$\text{Formula [1] "Intercept + a + w1"}$

Coefficients
(Intercept) a w1
1.5134810 1.9898810 0.9660859
Example 4. Checking the Experimental Treatment Assignment assumption. (No ETA violation)

Code:

```r
obs.data.ETA <- check.ETA(y=y, a=a, v=w1, w=cbind(w1,w2),
data=obs.data, yfamily='gaussian', afamily='binomial',
model.msm=list(Model=list(c(1,0),c(0,1))),
model.aw=list(Model=list(c(1,0),c(0,1))),
model.av=list(Model=list(c(1))),
model.yaw=list(Model=list(c(1,0,0),c(0,1,0),c(0,0,1),c(0,1,1))),
model.yyaw=list(Size=5, Int=2), accuracy=1e-5, stable.wt=F,
n.b=1000, n.sim=100, index.v.inW=c(1))
```
Example 5. Checking the Experimental Treatment Assignment assumption. (With ETA violations)

Code:

```r	n<-2000;
w1<-runif(n); w2<-runif(n); w3<-runif(n); w4<- runif(n);
w<-cbind(w1, w2, w3, w4);

# Let g(A|W) = logit^(-1) (-1 + w1 - w2 + w1*w3)
p.vec <- diag(4)
model.aw <- list(formula = list(p.vec[1,], p.vec[2,], p.vec[1,]+p.vec[3,]), coef = c(-1, 1, -5, 1))
  # about 60% violations

# Let E(Y|A, W)=-1+A+w1+w2+w1*w3;
```
```r
p.vec <- diag(5)
model.yaw <-
list(formula=list(p.vec[1,], p.vec[2,], p.vec[3,],
p.vec[2,]+p.vec[4,]), coef=c(-1, 1, 1, 1, 1, 1));

obs.data <- create.obs.data(w, afamily='binomial',
yfamily='gaussian', model.yaw, model.aw)

obs.data.ETA <- check.ETA(y=y, a=a, v=w1, w=w, data=obs.data,
yfamily='gaussian', afamily='binomial',
model.msm=list(Model=list(c(1,0),c(0,1))),
model.aw=list(Model=model.aw$formula),
model.av=list(Model=list(c(1)));
model.yaw=list(Model=model.yaw$formula), wt.censor=NULL,
ncv=5, ncv.nuisance=5, stable.wt=F, fixed.terms=NULL,cv.risk=F, n.b=1000, n.sim=100, index.v.inW=c(1))```
check.ETA()

Bootstrap distribution of IPTW causal coefficients: Without ETA violations
check.ETA()

Bootstrap distribution of IPTW causal coefficients: With ETA violations