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General Topics Covered:
1) Resampling Based Multiple Testing
2) Clustering
3) Cross-validated Selection among Estimators
4) Cross-validated Selection with Censored Data
5) Algorithms for construction of Estimators

Subtopics:
Classification and Regression, Regression on multivariate outcomes,
Regression on censored outcomes (Prediction of survival),
conditional density and hazard estimation.
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Applications in Genomics:
a) Detection of binding sites in gene expression experiments,
b) Regression of single nucleotide polymorphisms (SNP’s), gene
expressions, comparitive genome hybridization measurements, and
epidemiologic variables, on clinical outcomes such as survival or
time till recurrence,
c) Clustering protein structures, classifying or predicting protein
structures, clustering genes/patients based on gene expression
experiments
d) many others.
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DATA AND NULL HYPOTHESES

Data: X1, . . . , Xn i.i.d. observations of a multidimensional vector
X ∼ P ∈M for a model M.

• gene expression measurements

• gene expression, covariates, and outcomes (e.g.: survival)

• SNPs, covariates, and an outcome (e.g.: response to treatment)

• occurance of sequence motifs and gene expression.

Parameters: Real valued parameters µj(P ), j = 1, . . . , p.
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Examples of Parameters:

• location parameters (means, medians, differences in means)

• regression parameters (association between gene j’s expression
and outcome)

• Survival probabilities.

Null Hypotheses:

H0,j : µj(P ) = µ0
j , j = 1, . . . , p,

where µ0
j are hypothesized null values.
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TEST STATISTICS

Test H0,j , j = 1, . . . , p, with Tjn defined by

Tjn ≡ µjn − µ0
j

or Tjn ≡
µjn − µ0

j

σ̂(µjn)
.

We assume that µjn is an asymptotically linear estimator of µj ,
that is,

√
n(µjn − µj) =

1
n

n∑
i=1

ICj(Xi|P ) + oP (1), (1)

for some function X → ICj(X|P ), j = 1, . . . , p. Then, we know
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that as n→∞

Zn ≡
√
n(µn − µ(P )) D⇒ N(0,Σ(P )), (2)

where
Σ(P ) = EP (IC(X | P )IC(X | P )>)

is the covariance of the vector influence curve
IC(X | P ) = {ICj(X | P ) : j = 1, . . . , p} of µjn.

Let
Z ∼ Q0(P ) ≡ N(0,Σ(P )) (3)

represent the limit (in distribution) of Zn.
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ERROR RATES

Given a vector c, consider a corresponding multiple testing
procedure MT (c) defined by:

Reject H0,j , if | Tjn |> cj , j = 1, . . . , p, (4)

Let:

• Vn(c) =
∑p
j=1 I(| Tjn |> cj , µj(P ) = µ0

j ) be the number of false
positives of MT (c),

• For a candidate cdf F of Vn, let θ(F ) ∈ (0, 1) measure a
particular type-I-error rate satisfying 1) continuity in F and 2)
monotonicity in F in the sense that θ(F ) ≥ θ(G) if F ≤ G.
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Examples of Error rates θ(FVn
):

•
∫
xdFVn(x)/p = E(Vn)/p : per-comparison error rate (PCER),

•
∫
xdFVn(x) = E(Vn) : per-family error rate (PFER),

• 1− FVn
(0) = Pr(Vn ≥ 1): family-wise error rate (FWER),

• 1− FVn
(k) = Pr(Vn ≥ k) : Generalized family wise error rate

(gFWER).
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SINGLE STEP CUT-OFF RULE and ERROR CONTROL

Let c = c(Q,α) denote a vector function cut-off rule such that if
Tn ∼ Q, then MT (c) has the property that θ(FRn(c)) = α, where

Rn(c) =
p∑
j=1

I(| Tjn |> cj).

A sensible cut-off rule: set cj equal to the 1-δ-quantile of the
j-th marginal distribution of Q, where δ is fine-tuned to yield
control at level α.

So, MT (c) = MT (c(Q,α)) depends critically on the choice of
distribution Q under which the error rate is controlled.
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We want to choose an estimated distribution Qn so that
cn = c(Qn, α) satisfies

lim sup
n→∞

θ(FVn
) ≤ α.

That is, for large enough sample size, the error rate αn for a sample
of size n is bounded from above by the target error rate α.
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NULL DISTRIBUTIONS

Let Qn(P ) be the distribution of the test statistics under X ∼ P .
We seek to control the error rate under a test statistic
distribution that satisfies the overal null hypotheses and is as
close as possible to the true test statistic distribution Qn(P ).
Therefore, the correct null distribution is the projection of Qn(P )
onto the space of mean zero distributions.

NOTE: Current approach is to choose a null data generating
distribution P0 ∈M0 = {P : µ(P ) = µ0}, and control error rate
under Qn(P0).
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Let P0 = P0(P ) ≡ Π(P | M0) be a projection (e.g.
Kullback-Leibler) of the true data generating distribution onto M0.
Let Q0n = Q0n(P ) = Π(Qn(P ) | Q0) be the projection of the
test-statistic distribution Qn(P ) onto the space of mean zero
distributions. In general,

lim
n→∞

Q0n = N(0,Σ(P ))6= lim
n→∞

Qn(P0) = N(0,Σ(P0)).

Page 15



RESULTS:

1. Let Q0 = N(0,Σ(P )). If c0 ≡ c(Q0, α) then MT (c0)
asymptotically controls the error rate at level α.

2. Let Q0n be an estimator of Q0. Let c0n ≡ c(Q0n, α) and

suppose c0n
P→ c0 = c(Q0, α) for n→∞. Then

lim sup
n→∞

θ
(
FVn(c0n)

)
≤ α. (5)
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ESTIMATION: Estimate Q0 with Q0n, e.g.:

• Q0n = N(0,Σn). Provides asymptotic control.

• Bootstrap method. Provides asymptotic control.

• Qn(P0n), where P0n is an estimated data null distribution.
Does not provide asymptotic control unless

Σ(P0) = Σ(P ). (6)

Condition (6) is the formal analogue of the subset pivotality
condition (Westfall and Young, 1993, p.42-43).
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BOOTSTRAP ESTIMATED NULL DISTRIBUTION

Suppose Tn =
√
n(µn − µ0). Let

• P̃n be an estimator of P according to model M.

• µ̃n = µ(P̃n) be the parameter estimate under P̃n

• µ#
n be µn applied to n i.i.d. copies X#

1 , . . . , X
#
n of X# ∼ P̃n

• Q#
0n be the distribution of Z#

n =
√
n(µ#

n − µ̃n)

Estimate Q0 with Q#
0n. Under weak regularity conditions, it is

known that Z#
n

D⇒ Z ∼ Q0 conditional on P̃n, and hence Q0n

consistently estimates Q0.
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Define

R#
n (c) ≡

p∑
j=1

I(| Z#
jn |> cj)

and let cn = c(Q#
0n, α): that is, it satisfies θ

(
FR#

n (c)

)
= α. Then,

MT (cn) is a bootstrap based multiple testing procedure
asymptotically controlling θ(FVn

) at level α.
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TWO SAMPLE PROBLEM

Suppose we have n1 observations from Population 1 with mean µ1

and n2 observations from Population 2 with mean µ2.

Null Hypotheses: H0,j : µj ≡ µ2,j − µ1,j = 0, j = 1, . . . , p.

Test Statistics:

Djn = X̄2,j − X̄1,j , j = 1, . . . , p

or Tjn =
X̄2,j − X̄1,j√

σ̂2
1,j/n1 + σ̂2

2,j/n2

, j = 1, . . . , p.
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COMPARISON OF NULL DISTRIBUTIONS

Let COV (Xj , Xj′) be φ1 in population 1 and φ2 in population 2.

Distribution V ar(Djn) Cov(Djn, Dj′n)

Permutations σ2
1,j

n2
+ σ2

2,j

n1

φ1
n2

+ φ2
n1

Bootstrap σ2
1,j

n1
+ σ2

2,j

n2

φ1
n1

+ φ2
n2

Note:

• V AR(Tjn) = 1 for both distributions.

• But the two expressions for COV (Tjn, Tj′n) are not equivalent
unless n1 = n2.
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EQUIVALENCE: MULTIPLE TESTING/CONFIDENCE REGION

Let cn = c(Q#
n , α). Then, the random region {µ :

√
n|µn − µ| < cn}

or {
µ : µjn −

cjn√
n
< µj < µjn +

cjn√
n
, j = 1, . . . , p

}
(7)

is a θ-specific (1− α)% confidence region for µ(P ).

The multiple testing procedure MT (cn) equals:

Reject H0j if µ0
j is outside the interval

[
µjn −

cjn√
n
, µjn +

cjn√
n

]
,

for j = 1, . . . , p.
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The correlation example

Suppose we observe n i.i.d. observations X1, . . . , Xn of a vector
X = (X(1), X(2), X(3)). For the sake of illustrations, we will
assume that the variables are standardized so that VAR(X(j)) = 1,
j = 1, 2, 3, and suppose that we assume the parametric model
X ∼ N(0, ρ), where ρ is the correlation matrix of X. Let ρj ,
j ∈ J ≡ {(12), (13), (23)} denote the three unknown correlations.
Suppose we are concerned with testing H0,j : ρj = 0, j ∈ J . Let
ρjn, j ∈ J , be the empirical correlations, and suppose that we use
as test-statistics Tnj =

√
nρjn. Let S0 = {j ∈ J : ρj = 0} be the set

of true nulls.

Let Qn1 = Qn(P0) be the null distribution of Tn under the data
generating distribution P0 = N(0, I), where I denotes the identity
matrix. Let Qn2 be the distribution of

√
n(ρn − ρ). One wants to

choose a null distribution which is such that the sub-distribution
corresponding with the components in S0equals or approximates
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well the actual distribution of Tnj , j ∈ S0. It follows immediately
that the sub-distribution of Qn2 corresponding with the
components in S0 equals (by definition) the distribution of
Tnj , j ∈ S0. Consequently, an estimate of the limit distribution of
Qn1 as one obtains with either the nonparametric bootstrap, or
model based bootstrap, or influence curve approach, consistently
estimates the actual distribution of Tnj , j ∈ S0. We will now show
that the sub-distribution of Qn1 fails to do this.

Firstly, if the components of X are uncorrelated, then it follows
immediately that the three empirical correlations are independent.
Consequently, by the CLT it follows that Qn(P0) converges to a
N(0, I). However, two empirical correlations corresponding with
true nulls are not necessarily (asymptotically) uncorrelated. For
example, suppose that ρ13 = ρ23 = 0, but ρ23 6= 0. Then it follows
that √

n(ρn12, ρn13)
D⇒ N(0,Σ0),
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where the 2 by 2 matrix Σ0 is 1 on the diagonal and ρ23

off-diagonal.
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DATA ANALYSIS

The publicly available data set of Alizadeh et al. (2000):

• Blood samples from n = 40 Diffuse Large B-Cell
Lymphoma (DLBCL) patients

• Expression of p = 13, 412 clones (relative to a pooled control)
measured with cDNA arrays

• Patients belong to two molecularly distinct disease groups:

– n1 = 21 Activated with mean µ1

– n2 = 19 Germinal Center (GC) with mean µ2

• Survival time T measured on each patient

• Pre-processing:

– log2

– replace missing values with the mean for that gene

– truncate ratios exceeding 20-fold to ± log2(20)
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DIFFERENCE IN MEANS: METHOD

• Null hypotheses: for j = 1, . . . , p

H0,j : µj ≡ µ2,j − µ1,j = 0.

• Test statistics: Tjn = µjn−0
sd(µjn) = X̄2,j−X̄1,j√

σ̂2
1,j/n1+σ̂2

2,j/n2
.

• Control the usual FWER: Pr(V ≥ 1) = α = 0.05

• Estimated null distributions and thresholds:

1. Fine-tuned common quantiles with the non-parametric
bootstrap distribution,

2. Fine-tuned common quantiles with the permutation
distribution,

3. Bonferroni common threshold with the tabled t-distribution.
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DIFFERENCE IN MEANS: RESULTS

Null Distribution Rejections

Non-parametric bootstrap 186

Permutations 287

T-distribution 32

Number of rejected null hypotheses (out of p = 13, 412) for three
different choices of multiple testing procedure. All 32 of the genes
in the t-distribution subset are in both the permutation and the
bootstrap subset, and the bootstrap and permutation subsets have
156 genes in common.
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LOGISTIC REGRESSION: METHOD

• Logistic Regression Model for each gene: j = 1, . . . , p

E(Group | Xj) =
eβ0,j+β1,j∗Xj

1 + eβ0,j+β1,j∗Xj

• Null hypotheses: for j = 1, . . . , p

H0,j : β1,j = 0.

• Test statistic:
√
n ∗ β1n.

• Control the gFWER Pr(V ≥ k) = α = 0.05 for k = 1, . . . , 100.

• Fine-tuned common quantiles.

• Estimated null distributions: Nonparametric bootstrap.

• RESULTS
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k = 1 10 50 100 200

Rejections 303 303 303 471 553

Table 1: Logistic Regression Parameters. Number of rejected null
hypotheses (out of p = 13, 412) using the non-parametric bootstrap
estimated null distribution and controlling the gFWER P (Vn > k)
for different choices of k, where Vn is the number of false positives.
The test statistics used are

√
n ∗ (βn − 0).
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LINEAR REGRESSION: METHOD

• Accelerated failure time model for each gene: j = 1, . . . , p

E(log(T ) | Xj) = γ0,j + γ1,j ∗Xj

• Use an Inverse Probability of Censoring Weighted (IPCW)
estimator for γ since survival is right-censored for some
patients.

• Null hypotheses: for j = 1, . . . , p

H0,j : γ1,j = 0.

• Test statistic:
√
n ∗ γ1n.

• Control the gFWER Pr(V ≥ k) = α = 0.05 for k = 1, . . . , 100.

• Fine-tuned common quantiles with the non-parametric
bootstrap distribution.

• Could do for each disease group (Activated and GC) separately
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and compare lists of significant genes.

• RESULTS soon...
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SIMULTATIONS USING REAL DATA

• Sample from the data set derived from Alizadeh et al. (2000)

• p = 100 random genes, centered to have mean zero in both
groups.
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Permutation Non-parametric Parametric

Bootstrap Bootstrap

n1 = 5, n2 = 15

Dj 0.21 0.025 0.085

Tj 0.020 0.025 0.020

n1 = 9, n2 = 11

Dj 0.13 0.050 0.065

Tj 0.015 0.065 0.015

n1 = 10, n2 = 10

Dj 0.17 0.060 0.070

Tj 0.020 0.055 0.035

Estimates α̂ of the error rate Pr(V > 10) over I = 200 independent

simulated data sets for null distributions of Dj and Tj . The target error

rate is α = 0.05.
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CONCLUSIONS

1. Q0 = N(0,Σ(P )) is the asymptotically correct null distribution
for the test statistics

√
n(µn − µ0) and it provides asymptotic

control of type I error rates that are a function of the
distribution of the number of false positives.

2. For a finite sample, Q0 can be consistently estimated with the
standard bootstrap.

3. Common practice of estimating Q0 via a data null distribution
P0 only provides asymptotic control when Σ(P0) = Σ(P ).

4. Multiple testing is equivalent with constructing an 0.95-error
specific confidence region (e.g. using the bootstrap).

5. Two Sample Problem: Permutation data null distribution P0n

has the wrong asymptotic covariance unless n1 = n2 or Σ1 = Σ2
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Multiple hypothesis testing framework

Model. Let X1, . . . , Xn be n i.i.d. copies of a random variable
X ∼ P ∈M, where P is known to be an element of a particular
statistical model M (possibly nonparametric). Let Mj ⊂M be a
collection of m submodels and let H0j = I(P ∈Mj) be the
corresponding set of null hypotheses, j = 1, . . . ,m. Thus, H0j is
true if P ∈Mj and false otherwise.

Let S0 = S0(P ) ≡ {j : H0j is true} = {j : P ∈Mj} be the set of
m0 = |S0| true null hypotheses, where we note that S0 depends on
the true data generating distribution P . Let
Sc0 = Sc0(P ) ≡ {j : j 6∈ S0} be the set of m1 = m−m0 false null
hypotheses, i.e., true positives.
Example: H0j : µ(j) ≤ µ0(j), where the µ(j) = µ(j | P ) are
real-valued parameters
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Type I error rates. Decision to reject or not the null hypotheses
are based on test statistics Tn(j), j = 1, . . . ,m, where we assume
that large values of Tn(j) provide evidence against the null
hypothesis H0j . Let Tn = (Tn(j) : j = 1, . . . ,m) be the
corresponding m-vector of test statistics, with joint distribution
Qn = Qn(P ). The end-product of single-step or stepwise multiple
hypothesis testing procedures is a set,
Sn = S(X1, . . . , Xn;Q0, α) ⊆ {1, . . . ,m}, of rejected hypotheses,
i.e., of null hypotheses believed to be false.
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S(X1, . . . , Xn;Q0, α), the set Sn depends on the data, X1, . . . , Xn,
the choice of null distribution Q0 for computing cut-offs for the test
statistics or p-values, and on α, the nominal level of the test).

Two types of errors can be committed: a false positive, or Type I
error, is committed by rejecting a true null hypothesis, and a false
negative, or Type II error, is committed when the test fails to reject
a false null hypothesis.

The situation can be summarized by the table below, where the
number of Type I errors is Vn = |Sn ∩ S0| and the number of Type
II errors is Un = |SCn ∩ SC0 |. Note that both Un and Vn depend on
the unknown data generating distribution P through S0 = S0(P ).
The numbers m0 = |S0| and m1 = m−m0 of true and false null
hypotheses are unknown parameters, the number of rejected
hypotheses Rn = |Sn| is an observable random variable, and
m1 − Un, Un, m0 − Vn, and Vn are unobservable random variables
(depending on P , through S0(P )).
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Table 2: Type I and Type II errors in multiple hypothesis testing.

Null hypotheses

not rejected rejected

true m0 − Vn Vn (Type I) m0

Null hypotheses

false Un (Type II) m1 − Un m1

m−Rn Rn m
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Type-I Error Rate

In general, we make the following assumptions for the parameter
θ(FVn

) defining a particular Type I error rate. Given the distance
measure d(F1, F2) = maxx∈{0,...,m} | F1(x)− F2(x) | for two
cumulative distribution functions F1 and F2 on {0, . . . ,m}, we
assume that the parameter θ(F ) satisfies the following properties,
where F represents a c.d.f. on {0, . . . ,m} for Vn.

Monotonicity.

If F1 ≥ F2, then θ(F1) ≤ θ(F2). (8)

Uniform Continuity.

If d(Fn, Gn) → 0, then θ(Fn)− θ(Gn) → 0, (9)
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or equivalently,

sup
{(F,G):d(F,G)≤δn}

| θ(F )− θ(G) |→ 0

if δn → 0.
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Adjusted p-values

As in the single hypothesis setting, multiple testing procedures may
be described in terms of p-values. Given any multiple testing
procedure, the adjusted p-value corresponding to the test of a single
hypothesis H0j can be defined as the nominal level of the entire
procedure at which H0j would just be rejected, given the values of
all test statistics involved. In terms of our previous notation, the
adjusted p-value for hypothesis H0j , given a multiple testing
procedure Sn = S(X1, . . . , Xn;Q0, α), is

p̃n(j) = inf {α ∈ [0, 1] : j ∈ S(X1, . . . , Xn;Q0, α)} , (10)

where the nominal Type I error rate is the α-level at which the
specified procedure is performed. Hypothesis H0j is then rejected
at nominal Type I error rate α if p̃n(j) ≤ α. This definition of
adjusted p-values applies to procedures controlling any type of
error rate, e.g., gFWER, PCER, FDR.
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As in the single hypothesis case, an advantage of reporting adjusted
p-values, as opposed to only rejection or not of the hypotheses, is
that the level of the test does not need to be determined in
advance, that is, results of the multiple testing procedure are
provided for all α.
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Single Step Multiple Testing Procedure

A hypothesis H0j is rejected if Tn(j) > cj , for an m-vector of
cut-offs c = (cj : j = 1, . . . ,m). Denote the number of rejected
hypotheses and Type I errors by

R(c | Q) =
m∑
j=1

I(Tn(j) > cj) and

V (c | Q) =
∑
j∈S0

I(Tn(j) > cj),

respectively, where the notation R(c | Q) and V (c | Q)
acknowledges that the distribution of the above sums is defined by
a distribution Q for the test statistics Tn.
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Procedure 1. Single-step procedure — control of general
Type I error rates θ(FVn

).
Given a null distribution Q0, define a vector of cut-offs c(Q0, δ) =
(cj(Q0, δ) : j = 1, . . . ,m) for the test statistics Tn, such that
cj(Q0, δ) is the (1 − δ)–quantile of the marginal distribution Q0j ,
j = 1, . . . ,m. Let δ be chosen as

δ0 = δ0(α) = max{δ : θ(FR(c(Q0,δ)|Q0)) ≤ α}. (11)

Here c(Q0, δ0(α)) is referred to as the common-quantile cut-off rule
for type-I-error θ based on the null distribution Q0.
The single-step multiple testing procedure for controlling the Type
I error rate θ(FVn

) at level α is defined by

Reject H0j if Tn(j) > cj(Q0, δ0(α)), j = 1, . . . ,m.
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Rather than simply reporting rejection or not of the hypotheses at
a prespecified level α, one can report adjusted p-values for
Procedure 1, computed under the null distribution Q0. The
adjusted p-value for hypothesis H0j is given by

P̃n(j) = θ(FR(c(Q0,δ0j)|Q0)), where δ0j = Q̄0j(Tn(j)) (12)

and Q̄0j , j = 1, . . . ,m, denote the marginal survival functions
corresponding to the null distribution Q0. The procedure for
controlling the Type I error rate at level α can then be stated
equivalently as

Reject H0j if P̃n(j) ≤ α, j = 1, . . . ,m.
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Theorem: Given a null distribution Q0 and α ∈ (0, 1), denote the
number of Type I errors for Procedure 1 by

Vn = V (c(Q0, δ0(α)) | Qn) =
∑
j∈S0

I(Tn(j) > cj(Q0, δ0(α))),

where Qn = Qn(P ) is the (finite sample) joint distribution of the
test statistics Tn. Assume that there exists a random m-vector
Z ∼ Q0 = Q0(P ) so that

lim inf
n→∞

Pr

∑
j∈S0

I(Tn(j) > cj) ≤ x

 ≥ PrQ0

∑
j∈S0

I(Z(j) > cj) ≤ x

 .

(13)
Then Procedure 1 provides asymptotic control of the Type I error

rate θ(FVn), that is,

lim sup
n→∞

θ(FVn
) ≤ α.
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Explicit Proposal for Null Distribution

Suppose that there exists known m-vectors θ0 ∈ IRm and τ0 ∈ IRm

(null values), so that

lim sup
n→∞

ETn(j) ≤ θ0(j) (14)

lim sup
n→∞

V ar[Tn(j)] ≤ τ0(j), for j ∈ S0.

Let

ν0n(j) = min
(

1,
τ0(j)

V ar[Tn(j)]

)
and define the m-vector Zn ∼ Q0n = Q0n(P ) by

Zn(j) ≡
√
ν0n(j)

(
Tn(j) + θ0(j)−ETn(j)

)
, j = 1, . . . ,m. (15)

Suppose that

(Zn(j) : j ∈ S0) ⇒D (Z(j) : j ∈ S0), (16)

where we allow various components of Z ∼ Q0 = Q0(P ) to be
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degenerate ( e.g., at −∞). Then, for this choice of null distribution
Q0 and for all c = (cj : j = 1, . . . ,m) and x

lim inf
n→∞

Pr

∑
j∈S0

I(Tn(j) > cj) ≤ x

 ≥ PrQ0

∑
j∈S0

I(Z(j) > cj) ≤ x

 ,

so that the previous Theorem applies.
Practical remark: Given the null values θ0, τ0 for the mean and
variance of the test-statistic distribution (when the null would be
true), respectively, this explicit proposal for the null distribution
corresponds with 1) simulate a large number B of vectors Tn from
the actual true distribution Qn(P ), 2) compute the marginal
expectation ETn and variance VAR(Tn), and 3) make the
m×B-matrix

√
ν0n(Tn − ETn + θ0.
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Step-down Procedures for FWE

We propose two step-down multiple testing procedures, based on a
null distribution Q0 = Q0(P ) that provides asymptotic control of
the family-wise error rate, without the requirement of subset
pivotality. The first procedure involves maxima of the test
statistics Tn(j) (maxT, Procedure 2) and the second is based on
minima of p-values Pn(j), also computed under the null Q0 (minP,
Procedure 3).
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Procedure 2. Step-down procedure based on maxima of
test statistics (maxT) — control of FWER
Let Tn,(j) be the ordered test statistics, Tn,(1) ≥ . . . ≥ Tn,(m), and
Rn(j) the indices for these order statistics, so that
Tn,(j) = Tn(Rn(j)), j = 1, . . . ,m. Given a null distribution Q0 and
α ∈ (0, 1), define (1− α)–quantiles, c(A) = c(A,Q0, α) ∈ IR, for
maxima of random variables Z = (Z(j) : j = 1, . . . ,m) ∼ Q0 over
the complements of subsets A ⊆ {1, . . . ,m}

c(A) = inf
{
c : PrQ0

(
max
j 6∈A

Z(j) ≤ c

)
≥ 1− α

}
.

Given the indices Rn(j) for the order statistics Tn,(j), define
(1− α)–quantiles

Cn(j) = c({Rn(1), . . . , Rn(j − 1)}, Q0, α)
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and test statistics

T ∗n,(j) ≡

Tn,(j), if Tn,(j−1) > Cn(j − 1)

−∞, otherwise
, j = 1, . . . ,m.

The step-down maxT multiple testing procedure for controlling the
FWER at level α is defined by

Reject H0,Rn(j) if T ∗n,(j) > Cn(j), j = 1, . . . ,m.
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Adjusted P-values

Note that the definition T ∗n,(j) = −∞, if Tn,(j−1) ≤ Cn(j − 1),
ensures that the procedure is indeed step-down, that is, one can
only reject a particular hypothesis provided all hypotheses with
larger test statistics were rejected beforehand. Rather than simply
reporting rejection or not of the hypotheses at a prespecified level
α, one can report adjusted p-values for Procedure 2, computed
under the null distribution Q0. The adjusted p-value for hypothesis
H0,Rn(j) is given by

P̃n(Rn(j)) = max
k=1,...,j

{
PrQ0

(
max

l∈{Rn(k),...,Rn(m)}
Z(l) > Tn(Rn(k))

)}
.

(17)
Here the adjusted p-values are conditional on the observed test
statistics and their ranks. The procedure for controlling the FWER
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at level α can then be stated equivalently as

Reject H0,Rn(j) if P̃n(Rn(j)) ≤ α, j = 1, . . . ,m.
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Assumptions

In order to prove asymptotic control of the FWER by Procedure 2,
we make the following two assumptions.

Assumption A1T. There exists an m-dimensional random vector
Z ∼ Q0(P ) so that

lim sup
n→∞

Pr

(
max
j∈S0

Tn(j) > x

)
≤ PrQ0

(
max
j∈S0

Z(j) > x

)
for all x.

(18)
We also assume that for α ∈ (0, 1)

max
A⊆{1,...,m}

c(A,Q0, α) <∞. (19)

Assumption A2T. There exists a degenerate maximal value M1
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(e.g., +∞) so that for all M < M1

Pr

(
min
j∈Sc

0

Tn(j) ≥M

)
→ 1 as n→∞ (20)

and

lim
M↑M1

lim
n→∞

Pr

(
max
j∈S0

Tn(j) ≥M

)
= 0. (21)

Note that these assumptions only require that Tn represents a
sensible set of test statistics.

Page 58



Theorem: Given a null distribution Q0 and α ∈ (0, 1), denote the
number of Type I errors for Procedure 2 by

Vn ≡
m∑
j=1

I(T ∗n,(j) > Cn(j), Rn(j) ∈ S0).

Suppose Assumptions A1T and A2T on the test statistics Tn(j)
and null distribution Q0 hold. Then, Procedure 2 provides
asymptotic control of the family-wise error rate at level α, that is,

lim sup
n→∞

Pr(Vn ≥ 1) ≤ α.

If (18) in Assumption A1T holds with equality, then asymptotic
control is exact:

lim
n→∞

Pr(Vn ≥ 1) = α.
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Outline Proof.

Note that, with probability one in the limit, the first m1 = |Sc0|
rejected hypotheses correspond to the m1 false null hypotheses.
Thus, no Type I errors are committed for these first m1 rejections
and one can focus on the m0 least significant statistics, Tn,(j),
j = m1 + 1, . . . ,m, which now correspond to the test statistics for
the true nulls, Tn(j), j ∈ S0. By definition of the step-down
procedure, a Type I error is committed iff maxj∈S0 Tn(j) > Cn(Sc0),
which is controlled at level α. Thus, conditional on having rejected
the first m1 correct rejections, with probability 1− α the procedure
will not reject at step m1 + 1 and thus result in zero false rejections.

Remark: Local alternatives cause non-control of FWE for
step-down procedures.
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Step-down procedure (FWE) based on minima of p-values

Procedure 2 above is a step-down analogue of the single-step
common-cut-off procedure. One can also prove asymptotic control
of the FWER for an analogue of Procedure 2, where maxima of
test statistics Tn(j) are replaced by minima of unadjusted p-values
Pn(j), also computed under the proposed null distribution Q0:
Pn(j) = Q̄0j(Tn(j)), where Q̄0j , j = 1, . . . ,m, denote the marginal
survival functions corresponding to the null distribution Q0. Such a
procedure corresponds to (2.10) in Section 2.6 of Westfall and
Young (1993), (with the important distinction in the choice of null
distribution Q0) and is a step-down version of the common-quantile
procedure in Pollard, van der Laan (2003).

Note that procedures based on maxima of test statistics (maxT)
and minima of p-values (minP) are equivalent, when the test
statistics Tn(j) are identically distributed, j = 1, . . . ,m. In this
case, the marginal survival functions Q̄0j are the same for each j,
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and thus the significance rankings based on Tn(j) and Pn(j)
coincide. In general, however, the two procedures produce different
results, and considerations of balance, power, and computational
feasibility should dictate the choice between the two approaches. In
the case of non-identically distributed test statistics Tn(j), not all
tests are weighted equally in the maxT procedure and this can lead
to unbalanced adjustments. When the null distribution Q0 is
replaced by a resampling-based estimator Q̂0n (Section ??),
procedures based on minima of p-values tend to be more sensitive
to the number of resampling steps and more conservative than
those based on maxima of test statistics, due to discreteness when
estimating quantiles. Also, minP procedures require more
computations than maxT procedures, because the unadjusted
p-values Pn(j) must be estimated before considering the
distribution of their successive minima.

Finally, note that while nominal p-values computed from a
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standard normal or other type of distribution may not be correct, a
step-down procedure based on minima of such transformed test
statistics nonetheless provides asymptotic control of the FWER
(e.g., Pn(j) = Φ̄(Tn(j)), where Φ̄ is the standard normal survival
function). That is, these p-values can be viewed as just another
type of test statistic Tn(j) and one can appeal to previous
theorems.

Here, however, we propose a step-down multiple testing procedure
where p-values are also defined in terms of the null distribution Q0,
that is, Pn(j) = Q̄0j(Tn(j)). We therefore have a more specific
procedure and assumptions for proving asymptotic control of the
family-wise error rate. Type I error control by the minP procedure
relies on Assumptions A1P and A2P, below.
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Procedure 3. Step-down procedure based on minima of
p-values (minP) — control of the FWER.
Given a null distribution Q0, define marginal or unadjusted
p-values as

Pn(j) = PrQ0(Z(j) ≥ Tn(j)) = Q̄0j(Tn(j)), (22)

where Z is an m-dimensional random vector Z ∼ Q0 and Q̄0j ,
j = 1, . . . ,m, denote the marginal survival functions corresponding
to the null distribution Q0. Let Pn,(j) be the ordered p-values,
Pn,(1) ≤ . . . ≤ Pn,(m), and Rn(j) the indices for these order
statistics, so that Pn,(j) = Pn(Rn(j)), j = 1, . . . ,m. Define
α–quantiles, c(A) = c(A,Q0, α) ∈ IR, α ∈ (0, 1), for minima of
p-values (Q̄0j(Z(j)) : j = 1, . . .m) over the complements of subsets
A ⊆ {1, . . . ,m}

c(A) = inf
{
c : PrQ0

(
min
j 6∈A

Q̄0j(Z(j)) ≤ c

)
≥ α

}
.
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Given the indices Rn(j) for the ordered p-values Pn,(j), define
α–quantiles

Cn(j) = c({Rn(1), . . . , Rn(j − 1)}, Q0, α)

and statistics

P ∗n,(j) ≡

Pn,(j), if Pn,(j−1) < Cn(j − 1)

1, otherwise
, j = 1, . . . ,m.

The step-down minP multiple testing procedure for controlling the
FWER at level α is defined by

Reject H0,Rn(j) if P ∗n,(j) < Cn(j), j = 1, . . . ,m.
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Adjusted P-values

Note that the definition P ∗n,(j) = 1, if Pn,(j−1) ≥ Cn(j − 1), ensures
that the procedure is indeed step-down, that is, one can only reject
a particular hypothesis provided all hypotheses with smaller
unadjusted p-values were rejected beforehand. Adjusted p-values
are defined similarly as for Procedure 2. The adjusted p-value for
hypothesis H0,Rn(j) is given by

P̃n(Rn(j)) = max
k=1,...,j

{
PrQ0

(
min

l∈{Rn(k),...,Rn(m)}
Q̄0j(Z(j)) < Pn(Rn(k))

)}
.

(23)
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Assumptions

Theorem below, proves asymptotic control of the FWER by
Procedure 3 under the following two assumptions, which are the
p-value analogues of Assumptions A1T and A2T, respectively.

Assumption A1P. There exists an m-dimensional random vector
Z ∼ Q0(P ) so that

lim sup
n→∞

Pr

(
min
j∈S0

Pn(j) < x

)
≤ PrQ0

(
min
j∈S0

Q̄0j(Z(j)) < x

)
for all x,

(24)
where Q̄0j , j = 1, . . . ,m, denote the marginal survival functions
corresponding to the null distribution Q0 = Q0(P ). We also assume
that for α ∈ (0, 1)

min
A⊆{1,...,m}

c(A,Q0, α) > 0. (25)
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Assumption A2P. For each ε > 0,

Pr

(
max
j∈Sc

0

Pn(j) ≤ ε

)
→ 1 as n→∞ (26)

and

lim
ε↓0

lim
n→∞

Pr

(
min
j∈S0

Pn(j) ≤ ε

)
= 0. (27)
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Theorem: Given a null distribution Q0 and α ∈ (0, 1), denote the
number of Type I errors for Procedure 3 by

Vn ≡
m∑
j=1

I(P ∗n,(j) < Cn(j), Rn(j) ∈ S0).

Suppose Assumptions A1P and A2P hold, specifically, conditions
(24), (25), (26), and (27) are satisfied by the p-values Pn(j), i.e., by
the test statistics Tn(j) and null distribution Q0. Then, Procedure
3 provides asymptotic control of the family-wise error rate at level
α, that is,

lim sup
n→∞

Pr(Vn ≥ 1) ≤ α.

If (24) in Assumption A1P holds with equality, then asymptotic
control is exact

lim
n→∞

Pr(Vn ≥ 1) = α.

Page 69



Procedure 4. Step-down procedure based on maxima of
test statistics (maxT) — control of GFWER
Let Tn,(j) be the ordered test statistics, Tn,(1) ≥ . . . ≥ Tn,(m), and
Rn(j) the indices for these order statistics, so that
Tn,(j) = Tn(Rn(j)), j = 1, . . . ,m. Given a null distribution Q0 and
α ∈ (0, 1), define (1− α)–quantiles, c(A) = c(A,Q0, α) ∈ IR, for
maxima of random variables Z = (Z(j) : j = 1, . . . ,m) ∼ Q0 over
the complements of subsets A ⊆ {1, . . . ,m}

c(A) = inf
{
c : PrQ0

(
max
j 6∈A

Z(j) ≤ c

)
≥ 1− α

}
.

Given the indices Rn(j) for the order statistics Tn,(j), define
(1− α)–quantiles

Cn(j) = c({Rn(1), . . . , Rn(j − 1)}, Q0, α)
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and test statistics

T ∗n,(j) ≡

Tn,(j), if Tn,(j−1) > Cn(j − 1)

−∞, otherwise
, j = 1, . . . ,m.

Let
l∗ ≡ min(j : T ∗n,(j) = ∞)

be the number of test-statistics which are not set to −∞. The
step-down maxT multiple testing procedure for controlling the
GFWER= P (Vn > k) at level α is defined by

Reject H0,Rn(j) if T ∗n,(j) > Cn(j), j = 1, . . . ,m

and also reject {H0,Rn(l∗),H0,Rn(l∗+1), . . . ,H0,Rn(l∗+k−1)}.

Remark. Note that this procedure is nothing else than first
carrying out the Step-down procedure for controlling FWE and
subsequently rejecting the next k in the ordered list of
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test-statistics. Let Vn(1) be the number of False-positives for the
procedure 2 controlling FWE, and Vn(k) be the number of false
positives for Procedure 4 controlling GFWE.. Since the set of
rejections for the above procedure equals the union of the set of
rejections for Procedure 2 controlling FWE and another k
rejections, we have that Vn(k) ≤ Vn(1) + k. Since
lim supn→∞ P (Vn(1) > 0) ≤ α, it follows that the above procedure
satisfies

lim sup
n→∞

P (Vn(k) > k) ≤ α.

In addition, if lim supn→∞ P (Vn(1) > 0) = α, then we have

lim sup
n→∞

P (Vn(k) = k) = 1− α.

That is, with probabilty tending to 1-α, this procedure will select
precisely k false positives. This gives us the following theorem. This
procedure and theorem immedidately generalizes to a step-down
procedure based on minima of p-values controlling GFWER.
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Theorem for Procedure 4 controlling GFWER: Given a null
distribution Q0 and α ∈ (0, 1), denote the number of Type I errors
for Procedure 4 by

Vn(k) ≡
l∗+k−1∑
j=1

I(Rn(j) ∈ S0).

Suppose Assumptions A1T and A2T on the test statistics Tn(j) and
null distribution Q0 hold. Then, Procedure 4 provides asymptotic
control of the generalized family-wise error rate at level α, that is,

lim sup
n→∞

Pr(Vn(k) > k) ≤ α.

If (18) in Assumption A1T holds with equality, then asymptotic
control is exact:

lim
n→∞

Pr(Vn(k) > k) = α,
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and, in fact, in that case, we have

lim
n→∞

Pr(Vn(k) = k) = 1− α.
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Asymptotic Control for Consistent Estimator Null Distribution

If Q̂0n is a consistent estimator of Q0, then the corollary below
shows that procedures based on estimated cut-offs Ĉn(j) also
provide asymptotic control of the Type I error rate. We state the
Corollary for the step-down procedure based on maxima of test
statistics (Procedure 2), but the same result applies to the general
single-step procedure (Procedure 1) and the step-down procedure
based on minima of p-values (Procedure 3).
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Corollary: Let Q̂0n be such that, given the empirical distribution
Pn of X1, . . . , Xn, it converges pointwise (i.e., converges weakly) to
a limit distribution Q0 with continuous and strictly increasing
marginal cumulative distribution functions Q0j , j = 1, . . . ,m. This
implies that, conditional on Pn,

max
A⊆{1,...,m}

| c(A, Q̂0n, α)− c(A,Q0, α) |→ 0. (28)

Denote the number of Type I errors for Procedure 2 based on the
estimator Q̂0n by

V̂n ≡
m∑
j=1

I(T ∗n,(j) > Ĉn(j), Rn(j) ∈ S0).

Then, the family-wise error rate is controlled asymptotically at
level α

lim sup
n→∞

Pr(V̂n ≥ 1) ≤ α.
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If (18) in Assumption A1 holds with equality, asymptotic control is
exact

lim
n→∞

Pr(V̂n ≥ 1) = α.
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Bootstrap Estimator of the Null Distribution

The asymptotic null distribution Q0 = Q0(P ) can be estimated
with the non-parametric or model-based bootstrap. Let P̃n denote
an estimator of the true data generating distribution P . For the
non-parametric bootstrap, P̃n is simply the empirical distribution
Pn, that is, samples of size n are drawn at random with replacement
from the observed X1, . . . , Xn. For the model-based bootstrap, P̃n
is based on a model M, such as the m-variate normal distribution.

Each bootstrap sample consists of n i.i.d. realizations X#
1 , . . . , X

#
n

of a random variable X# ∼ P̃n. Denote test statistics computed
from bootstrap samples by T#

n . The proposed null distribution Q0

from Theorems can be estimated by the distribution Q̂0n of

Z#
n (j) ≡ ν̂0n(j)

(
T#
n (j) + θ0(j)− EP̃n

Tn
#(j)

)
, j = 1, . . . ,m,

(29)
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where

ν̂0n(j) = min

(
1,

τ0(j)
V arP̃n

[Tn#(j)]

)
.

Under regularity conditions, the bootstrap is known to be
consistent, in the sense that Z#

n ⇒D Z ∼ Q0 conditional on P̃n

In practice, one can only approximate the distribution of Z#
n by an

empirical distribution over B bootstrap samples drawn from P̃n.
That is, the estimator Q̂0n is the empirical distribution of Zbn,
where Zbn corresponds to the test statistics for the bth bootstrap
sample, b = 1, . . . , B.

For procedures based on maxima of the test statistics Tn
(Procedure 2), the quantiles c(A, Q̂0n, α) are simply the quantiles
of maxj /∈A Zbn(j) over the B bootstrap samples, that is,
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c(A, Q̂0n, α) is such that

c(A, Q̂0n, α) = inf

{
c :

1
B

B∑
b=1

I(max
j /∈A

Zbn(j) ≤ c) ≥ 1− α

}
.

Resampling-based procedures for minima of p-values (Procedure 3)
are more complex, as one must first estimate p-values
Pn(j) = PrQ0(Z(j) ≥ Tn(j)) using Q̂0n, before considering the
distribution of their successive minima. Unadjusted p-values Pn(j)
are estimated by

P̂n(j) =
1
B

B∑
b=1

I(Zbn(j) ≥ Tn(j)).

The reader is referred to ? for a fast algorithm for resampling
estimation of adjusted p-values for step-down procedures based on
minima of p-values.
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Example: t-statistics for single parameter hypotheses

Consider testing m single parameter null hypotheses of the form
H0j : µ(j) ≤ µ0(j) against alternative hypotheses
H1j : µ(j) > µ0(j), where µ(j) = µ(j | P ) is a real-valued
parameter, j = 1, . . . ,m. Then, the set of true null hypotheses can
be represented as S0 = {j : µ(j) ≤ µ0(j)}.

Let µn(j) be an asymptotically linear estimator of µ(j), with
influence curve ICj(X | P ), that is,

µn(j)− µ(j) =
1
n

n∑
i=1

ICj(Xi | P ) + oP (1/
√
n), (30)

where E[ICj(X | P )] = 0 and
IC(X | P ) = (ICj(X | P ) : j = 1, . . . ,m) denotes the
m-dimensional vector influence curve. Let

Tn(j) ≡
√
n
µn(j)− µ0(j)

σn(j)
(31)
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be the standardized test statistic, or t-statistics, for the null
hypothesis H0j , where σn(j) is a consistent estimator of
σ(j) ≡ E[ICj(X | P )2], j = 1, . . . ,m. Large values of Tn(j) provide
evidence against H0j : µ(j) ≤ µ0(j). Let
Tn = (Tn(j) : j = 1, . . . ,m) be the corresponding m-vector of test
statistics, with joint distribution Qn = Qn(P ).
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Choice of null distribution Q0

The test statistics Tn = (Tn(j) : j = 1, . . . ,m) satisfy Assumptions
A1T and A2T and Assumptions A1P and A2P, where the null
distribution Q0 = Q0(P ) is the m-variate normal distribution with
mean zero and covariance matrix ρ(P ), the correlation matrix of
the vector influence curve IC(X | P ). Thus, step-down Procedures
2 and 3, based on Tn and the null distribution Q0, provide
asymptotic control of the FWER for the test of single-parameter
null hypotheses of the form H0j : µ(j) ≤ µ0(j) against alternative
hypotheses H1j : µ(j) > µ0(j), j = 1, . . . ,m.
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Correspondence with explicit construction

The above theorems involve a null distribution Q0 that was derived
specifically in terms of the statistics µn in equation (31). It turns
out that, under mild regularity conditions, this null distribution Q0

corresponds to the general proposal Q∗0 defined as the asymptotic
distribution of m-vectors Z∗n, where

Z∗n(j) ≡ ν0n(j)
(
Tn(j) + θ0(j)− ETn(j)

)
, j = 1, . . . ,m.

The proposal above for the null distribution is defined simply as
the asymptotic distribution of m-vectors Zn, where

Zn(j) ≡
√
n
µn(j)− µ(j)

σn(j)
, j = 1, . . . ,m.

With θ0(j) ≡ 0 and τ0(j) ≡ 1, one can show that Z∗n and Zn have
the same asymptotic joint distribution, that is Q0 and Q∗0 coincide.
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Example: Tests of means

A familiar testing problem that falls within this framework is that
where X1, . . . , Xn are n i.i.d. random m-vectors, X ∼ P , and the
parameter of interest is the mean vector
µ = µ(P ) = (µj = µ(j | P ) : j = 1, . . . ,m) = EX. Null hypotheses
H0j : µ(j) ≤ µ0(j) then refer to individual components of the mean
vector µ and the test statistics Tn(j) are the usual one sample
t-statistics, where µn(j) = X̄n(j) = 1

n

∑
iXi(j) and

σ2
n(j) = 1

n

∑
i(Xi(j)− X̄n(j))2 are empirical means and variances

for the m components, respectively.

Page 85



Example: Tests of correlations

Another common testing problem covered by this framework is that
where the parameter of interest in the correlation matrix
ρ = ρ(P ) = (ρjk(P )) for the random vectors in the previous
example, ρjk = ρjk(P ) = Cor(Xj , Xk), j, k = 1, . . . ,m. Suppose we
are interested in testing the m(m− 1)/2 null hypotheses that the m
components of X are uncorrelated, Hjk : ρjk = 0, j = 1, . . . ,m,
k = j + 1, . . . ,m. Common test statistics for this problem are
Tn(jk) =

√
nrjk, where rjk are the sample correlations.

As discussed in Westfall and Young (1993), Example 2.2, p. 43,
subset pivotality fails for this testing problem. To see this, consider
the simple case m = 3 and assume H12 and H13 are true, so that
ρ12 = ρ13 = 0. Then the joint distribution of (T12, T23) is
asymptotically normal with mean vector zero, variance 1, and
correlation ρ23, and thus depends on the truth or falsity of the
third hypothesis H23. In other words, the asymptotic covariance of
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the vector influence curve for the sample correlations is not the
same under the true P as it is under a null distribution P0 for
which ρjk ≡ 0 ∀j 6= k.

However, our proposed null distribution Q0 (and bootstrap
estimator thereof) for the test statistics Tn does control the Type I
error rate when used in Procedures 1, 2, and 3. Tests of
correlations thus provide an example where standard procedures
based on subset pivotality fail, while procedures based on our
general null distribution Q0 achieve the desired control.
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F -statistics for multiple parameter hypotheses

Consider random m-vectors Xk ∼ Pk, k = 1, . . . ,K, from K

different populations with data generating distributions Pk ***.
Denote the mean vector and covariance matrix in population k by
µk = EXk and Σk, respectively. We are interested in testing the m
null hypotheses H0j : µk(j) ≡ µ(j) ∀k, that, for each population,
the jth components µk(j) of the mean vectors are equal to a
common value µ(j), j = 1, . . . ,m. As before, let S0 denote the set
of true null hypotheses. Suppose, we observe i.i.d. samples
Xk,1, . . . , Xk,nk

, of size nk from population k, k = 1, . . . ,K. Let
n =

∑
k nk denote the total sample size and δk,n = nk/n the

proportion of observations from population k in the sample, where
it is assumed that, ∀k, δk,n → δk > 0 as n→∞.

Page 88



As test statistics we can use the well-known F -statistics

Tn(j) =
1/(K − 1)

∑
k nk(X̄k(j)− X̄(j))2

1/(n−K)
∑
i,k(Xk,i(j)− X̄k(j))2

, j = 1, . . . ,m,

(32)
where X̄k denotes the sample mean vector for population k and
X̄ =

∑
k δk,nX̄k denotes the overall mean vector.
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Choice of null distribution Q0

Theorem: The F -statistics Tn = (Tn(j) : j = 1, . . . ,m) satisfy
Assumptions A1T and A2T of Theorem ?? and Assumptions A1P
and A2P of Theorem ??, where the null distribution Q0 = Q0(P ) is
the joint distribution of the random m-vector Z = f(Z1, . . . , ZK),
defined in terms of independent Gaussian m-vectors Zk ∼ N(0,Σk)
and a quadratic function f specified below. Thus, step-down
Procedures 2 and 3, based on Tn and the null distribution Q0,
provide asymptotic control of the FWER for the test of multiple
parameter null hypotheses H0j : µk(j) ≡ µ(j) ∀k, j = 1, . . . ,m.
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Proof of Theorem

Firstly, note that the denominators of the F -statistics can be
written as

Dn(j) =
n

n−K

∑
k

δk,nσ̂
2
k,n(j), j = 1, . . . ,m,

where σ̂2
k,n(j) are consistent estimators of the population variances

σ2
k(j), i.e., of the diagonal elements of covariance matrices Σk,
k = 1, . . . ,K. Thus, as n→∞,

Dn(j) ⇒P D(j) =
∑
k

δkσ
2
k(j), j = 1, . . . ,m.

The numerator of the F -statistics Tn(j) can be rewritten as

Nn(j) =
1

K − 1

∑
k

(1− δk,n)Zk,n(j)−
∑
l 6=k

√
δk,nδl,nZl,n(j)

2

,
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where Zk,n =
√
nk(X̄k − µ), k = 1, . . . ,K. Thus, the m-vector

Tn = (Tn(j) : j = 1, . . . ,m) of F -statistics can be approximated by
a random m-vector Zn that is a simple quadratic function
f(Z1,n, . . . , ZK,n) = (fj(Z1,n, . . . , ZK,n) : j = 1, . . . ,m) of the K
independent m-vectors Zk,n, k = 1, . . . ,K,

Tn(j) ≈
Nn(j)
D(j)

= Zn(j) = fj(Z1,n, . . . , ZK,n), j = 1, . . . ,m.

(33)
By the Central Limit Theorem,
(Zk,n(j) : j ∈ S0) ⇒D (Zk(j) : j ∈ S0), where Zk ∼ N(0,Σk),
k = 1, . . . ,K. For j /∈ S0,
Zk,n(j) =

√
nk(X̄k(j)− µk(j)) +

√
nk(µk(j)− µ(j)) converge to

either +∞ or −∞ for some k. Applying the Continuous Mapping
Theorem to the function (fj(Z1,n, . . . , ZK,n) : j ∈ S0) proves that
(Tn(j) : j ∈ S0) converges in distribution to (Z(j) : j ∈ S0), where
Z = f(Z1, . . . , ZK) and the Zk are independent m-vectors with
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Zk ∼ N(0,Σk), k = 1, . . . ,K. That is, the limit distribution of
(Tn(j) : j ∈ S0) is directly implied by the multivariate normal
distributions N(0,Σk), where Σk denotes the m×m covariance
matrix of Xk ∼ Pk, k = 1, . . . ,K. For j /∈ S0, Tn(j) →∞.

Therefore, the F -statistics Tn satisfy Assumptions A1T and A2T,
where the null distribution Q0 = Q0(P ) is the joint distribution of
the random m-vector Z = f(Z1, . . . , ZK), for independent
m-vectors Zk ∼ N(0,Σk) and the quadratic function f defined in
equation (33). In Assumption A2T, M1 = ∞, and condition (19) in
Assumption A1T follows immediately by continuity of Q0. For this
definition of Q0, Assumptions A1P and A2P are also satisfied.
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Explicit Null Distribution for F -test Statistics
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The nonparametric mixture model for test-statistics

Let Tn1 , . . . , T
n
m be m independent and identically distributed test

statistics for null hypotheses H0,j , j = 1, . . . ,m, with density being
a mixture of a known null density f0,n and unknown density f1,n
with unknown mixing proportion p0:

Tnj ∼ fn ≡ p0f0,n + (1− p0)f1,n.

Let Fn, F0,n, F1,n be the corresponding cdf’s.
Remark: A more common situation is that the finite sample null
distribution F0,n can be consistently estimated with an estimator
F̂0,n in the sense that

F0,n − F0 → 0

F̂0,n − F0 → 0,

where F0 denotes a limit null distribution. In this case, one
replaces the null distribution F0,n by its estimate F̂0,n.
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Equivalently, let Bj ∼ Bernoulli(1− p0) be the hidden label, Tnj ,
given Bj , has density fBj ,n, the full data are m i.i.d copies (Bj , Tnj ),
j = 1, . . . , p, but we only observe the test-statistics Tnj . Here
Bj = 1− I(H0,j is true) indicates if the null-hypothesis H0,j is true.

Let (B, Tn) denote the random variables described by:
B ∼ Bernoulli(p0), and Tn, given B, has density fB,n.
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Approximate correspondence between frequentist independence
and nonparametric mixture model

Frequentist independence model for test-statistics: Suppose
that it is known that the test-statistics are independent, that all
the marginal distributions of test statistics corresponding with a
true null hypothesis H0,j equal a common known distribution F0,n,
but that distributions Fj,n of Tnj , are unknown otherwise.

Let S0 = {j : Fj,n = F0,n} be the set of true nulls. Let
p0 ≡| S0 | /m. Let F1,n be the distribution of the mixture of Fj,n,
j ∈ Sc0, with uniform mixing distribution. For a dominating
measure µ, let f0,n ≡ dF0,n/dµ, and f1,n ≡ dF1,n/dµ.
Approximate correspondence: Consider a parameter (such as
FDR of the set {j : Tnj > t}) of the distribution of ~Tn under the
independence model which only depends on the m-marginal
distributions Fj,n through p0, F0,n, F1,n. Then this parameter has
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approximately the same value under this independence distribution
as under the corresponding mixture model distribution defined by
Bj ∼ Bernoulli(p0), Tnj ∼ fBj ,n, j = 1, . . . , p. Therefore, the
mixture model provides a convenient working model to find the
right cut-off t(α) so that the FDR of the set {j : Tnj > t} equals α.

For example, it can be verified that

EIND
∑m
j=1 I(T

n
j > t, j ∈ S0)

EIND
∑m
j=1 I(T

n
j > t)

=
EMIXT

∑m
j=1 I(T

n
j > t,Bj = 0)

EMIXT

∑m
j=1 I(T

n
j > t)

,

where EIND denotes the expectation under the distribution of ~Tn
in the frequentist independence model identified by S0, F0n, Fjn,
j 6∈ S0, and EMIXT denotes the expectation under the distribution
of (~Tn, ~Bn) in the i.i.d. mixture model identified by p0 =| S0 | /m,
F1n = sumj 6∈S0Fjn/ | Sc0 |, and F0n.
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It remains to be seen till what degree we have:

EIND

(∑m
j=1 I(T

n
j > t, j ∈ S0)∑m

j=1 I(T
n
j > t)

)
≈ EMIXT

(∑m
j=1 I(T

n
j > t,Bj = 0)∑m

j=1 I(T
n
j > t)

)
.

One fundamental difference between the two (with each other)
corresponding distributions is that under the frequentist model
| S0 | is fixed, while

∑
j I(Bj = 0) is random with mean | S0 |. To

obtain a stronger similarity one could enforce in the mixture model
the constraint that

∑
j I(Bj = 0) =| S0 |. The effect of this

additional constraint on our calculations in the mixture model
might need to be investigated.
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Finite Sample Identifiability in nonparametric mixture model

Given the actual density fn of the test-statisics and the null density
f0,n, the proportion of true nulls p0 and the alternative density f1,n
are identified up till:

0 ≤ p0 ≤ min
(

min
t

fn(t)
f0,n(t)

,min
t

Fn(t)
F0,n(t)

)
f1,n =

fn − p0f0,n
1− p0

.

Parameter of interest in nonparametric mixture model.

θn(t) ≡ P (B = 0 | Tn = t) = p0
f0,n(t)
fn(t)

Φn(t) ≡ P (B = 0 | Tn > t) = p0
F̄0,n(t)
F̄n(t)

John Storey refers to Φn(Tnj ) as q-values in his work on FDR, and
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therefore we will refer to θn(Tnj ) as local q-values.
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Unknown Multiple Testing Procedures Controlling FDR

In the following lemmas we adopt the common convention to define
the proportion of false discoveries as zero when the set of rejections
is empty.
Lemma Let S∗n ≡ {j : Tnj ≤ t∗n(α)}, where
t∗n(α) ≡ min{t : θn(t) ≤ α}. Let α′ = θ(t∗n(α)). Then

E
| S∗n ∩ S0 |
| S∗n |

= α′P (| S∗n |> 0).

If S∗n ≡ {j : θn(Tnj ) ≤ α}, then

E
| S∗n ∩ S0 |
| S∗n |

≤ αPr(| S∗n |> 0).

Proof: We prove the last statement. The proof of the first
statement is similar. Note

I(| S∗n |> 0)
| S∗n ∩ S0 |
| S∗n |

=

∑
j I(θ(T

n
j ) ≤ α,Bj = 0)∑

j I(θ(T
n
j ) ≤ α)

I(| S∗n |> 0).
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The conditional expecation of this quantity, given Tn1 , . . . , T
n
p ,

equals

I(| S∗n |> 0)

∑
j I(θ(T

n
j ) ≤ α)θ(Tnj )∑

j I(θn(T
n
j ) ≤ α)

≤ αI(| S∗n |> 0)
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Lemma: Let Sn ≡ {j : Tnj > tn(α)}, where

tn(α) ≡ min{t : Φn(t) ≤ α}.

Let α∗ = Φn(tn(α)). Then

E
| Sn ∩ S0 |
| Sn |

= P (| Sn |> 0)α∗.

Similarly, if Sn ≡ {j : Φn(Tnj ) ≤ α)}, then

E
| Sn ∩ S0 |
| Sn |

≤ P (| Sn |> 0)α.

Proof: We will now only proof the first statement, since the last
statement is proved similarly. Note

| Sn ∩ S0 |
| Sn |

=

∑
j I(T

n
j > tn(α), Bj = 0)∑
j I(T

n
j > tn(α))

.

The conditional expectation of this quantity, given the Bernoulli
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indicators I(Tn1 > tn(α)), . . . , I(Tnp > tn(α)), equals

I(| Sn |> 0)

∑
j I(T

n
j > tn(α))Φn(tn(α))∑
j I(T

n
j > tn(α))

= I(| Sn |> 0)α∗.
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Remark: Thus, if Pr(| Sn |> 0) ≈ 1, and α∗ = α (as is the case
for continuous distributions), we have that Sn and S∗n control the
FDR exactly at level α. Since Φn is easier to estimate from the
data than θn, we prefer the multiple testing procedure based on
estimating Sn (i.e., Φn) in comparison with a multiple testing
procedure estimating S∗n (i.e. θn).
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Equivalence with Benjamini-Hochberg Method

Under the assumption that Φ(t) is monotone in t, without any loss
we can use

Sn = {j : Φn(Tnj ) ≤ α}.

We need an estimate of Φn, and thus of Fn and p0. Let p̂0 be an
estimate or upper bound of p0: e.g., p̂0 = 1. A possible estimate of
Fn(t) is given by:

F̂n(t) =
1
p

p∑
j=1

I(Tnj ≤ t).

Let Φ̂n = p̂0

ˆ̄F0,n(t)

F̄n(t)
. Let

pj ≡ F̄0,n(Tnj ), j = 1, . . . , p

denote the p-values, as calculated under the null distribution F0,n.
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Then

Ŝn =
{
j : pj ≤

α

p̂0
F̂n(Tnj )

}
.

This equals the Benjamini-Hochberg method for controlling the
False Discovery Rate. An equivalent (common) representation of
this BH-procedure is obtained by ordering the p-values as
p(1) ≤ . . . ≤ p(m) and denoting the ranks by r(1), . . . , r(m) so that:

Ŝn =
{
r(j) : p(j) ≤

α

p ∗ p̂0
j

}
.
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Asymptotic control of FDR

Under the assumption that the test-statistics Tj,n, j ∈ Sc0, converge
to infinity for n→∞, we have that F̄1,n(t) → 1 for all t. Assume
that the null distribution converges as well to a limit distribution:
F0,n → F0 for n→∞. Then, Fn → p0F0 (or equivalently,
F̄n → 1− p0F0), and

Φn(t) → Φ(t) ≡ p0
1− F0(t)

1− p0F0(t)
.

Let

Sn = {j : Tj,n > tn(α)}, tn(α) = min{t : Φn(t) ≤ α}
S′n = {j : Tj,n > t(α)}, t(α) = min{t : Φ(t) ≤ α}.

Under the above assumptions and that Φ is differentiable at t(α)
with non-zero derivative, we have

Pr(Sn = S′n) → 1.
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We also have:

E
| Sn ∩ S0 |
| Sn |

− E
| S′n ∩ S0 |
| S′n |

→ 0.

Since the left-hand side equals α ∗ Pr(| Sn |> 0), this shows that in
order to obtain asymptotic control of the FDR, it suffices to obtain
a consistent estimator of Φ and thereby of t(α).

Let p̂0, F̂n and F̂0,n be asymptotically consistent estimators of p0,
Fn (that is, F̂n − Fn → 0), and F0, and let

Φ̂n(t) = p̂0
1− F̂0,n(t)
1− F̂n(t)

be the corresponding consistent estimator of Φ(t). Let

t̂n(α) ≡ min{t : Φ̂n(t) ≤ α}

be the corresponding consistent estimator of t(α).
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The proposed multiple testing procedure is now given by:

Ŝn ≡ {j : Tj,n > t̂n(α)},

and it asymptotically controls the FDR:

lim sup
n→∞

E
| Ŝn ∩ S0 |
| Ŝn |

= lim sup
n→∞

αP (| Ŝn |> 0).
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Consistent Conservative Estimation of p0.

Suppose we have consistent estimators F̂n, F̂0,n of F , F0 available.
We note that

p0 = lim
n→∞

Fn(t)
F0,n(t)

for all t <∞. Thus, instead of using the upper bound p0 = 1, one
can also consistently estimate p0 with

p̂0(t) =
F̂n(t)
F̂0,n(t)

,

where t is user supplied. Note, that for finite n, the estimate p̂0(t)
of p0 will be (typically) conservative:

p̂0(t) ≈ p0 + (1− p0)
F̂1,n(t)
F̂0,n(t)

,

with the bias being (1− p0)
F̂1,n(t)

F̂0,n(t)
.
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One might improve on this estimate by averaging a range of these
estimates over an interval [a, b]:

p̂0 ≡
1

b− a

∫ b

a

p̂0(t)dt.
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Estimation of Null and True Distribution of Test-Statistics

Bootstrap: Suppose Tj,n = Tj(X1, . . . , Xn), j = 1, . . . , p, where
Xi, i = 1, . . . , n, are i.i.d. observations from a data generating
distribution P . Let Pn be the empirical distribution. We can
estimate the distribution Fj,n of Tj,n with the distribution of
Tj(X

#
1 , . . . , X

#
n ), where X#

i are i.i.d. observations from the
empirical distribution Pn. The uniform mixture of these p
distributions F̂j,n represents now an estimate of Fn.

Similarly, we can use as an estimate of the asymptotic null
distribution F0 the bootstrap distribution of null-value centered
(and scaled) test-statistics: e.g., if Tj,n =

√
n(µj,n − µj0), then we

estimate F0 with the distribution of
√
n(µ#

j,n − µj,n) (Pollard, van
der Laan, 2003).
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Nonparametric control of rate of expected false discoveries.

Dependent mixture model
Let ~B = (B1, . . . , Bm) be a joint vector of bernoulli indicators
Bj = 1− I(H0j True), and assume that the marginal distributions
of Bj is Bernoulli(1− p0). Let Qn| ~B denote the joint conditional

distribution of the vector of test-statistics, given ~B. Assume that
the marginal distributions of Qn| ~B corresponding with the true null
hypotheses H0j (i.e. Bj = 0) equal a common known distribution
F0,n, and that the other marginal distributions equal a common
unknown distribution F1,n. For a dominating measure µ, let
fn0 ≡ dF0,n/dµ, and f1,n ≡ dF1,n/dµ. Let Fn = p0F0,n + 1− p0F1,n,
and Φn = p0

1−F0,n

1−Fn
. Under the above dependent mixture model, we

have the following result.
Lemma: Let Sn ≡ {j : Tnj > tn(α)}, where

tn(α) ≡ min{t : Φn(t) ≤ α}.
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Let α∗ = Φn(tn(α)). Then (ratio of expected number of false
discoveries, REFD)

REFD =
EQn

| Sn ∩ S0 |
EQn | Sn |

= α∗.

Proof: Since REFD only depends on the joint distribution of
( ~Bn, ~Tn) through its marginal distributions we have that we can
replace its distribution Qn by a distribution Q∗n with the same but
independent marginals. Under this independence distribution Q∗n
we have

| Sn ∩ S0 |=
∑
j

I(Tnj > tn(α), Vj = 0).

The conditional expectation of this quantaty, given the Bernoulli
indicators I(Tn1 > tn(α)), . . . , I(Tnp > tn(α)), equals∑

j

I(Tnj > tn(α))Φn(tn(α)) = α∗
∑
j

I(Tnj > tn(α)).
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This proves the statement.
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Large p case

Suppose that the number of tests p = p(n) converges to infinity if n
converges to infinity. In this case, it is reasonable to assume that

EQn
| Sn ∩ S0 |

EQn
| Sn |

− EQn

| Sn ∩ S0 |
| Sn |

→ 0.

Consequently, under this assumption the multiple testing procedure
Ŝn which controls asymptotically the REFD at level α will also
control asymptotically the FDR at level α. This teaches us that the
multiple testing procedure Ŝn can be applied in many genomics
applications in which the independence assumption is invalid, and
still control the FDR well.

Page 119



Data-adaptive Loss-based
Estimation with Cross-validation

Sandrine Dudoit and Mark J. van der Laan
Division of Biostatistics, UC Berkeley
www.stat.berkeley.edu/~sandrine

www.stat.berkeley.edu/~laan

PH243A – Fall 2003
Multivariate Statistical Methods in Genomics

Version: Multivariate Statistical Methods in Genomics

PH 243A, 2305 Tolman, MW 12-2

Fall 2003

www.stat.berkeley.edu/~sandrine
www.stat.berkeley.edu/~laan


c©Copyright 2003, all rights reserved



Acknowledgments

Joint work with
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Outline

• Motivation: estimator construction, selection, and performance
assessment in genomics.

• Estimation road map.

• Loss function.

• Estimator selection using cross-validation: finite sample results
and asymptotic optimality.

• Estimator performance assessment using cross-validation: risk
confidence intervals.

• Examples.

• Application 1: Likelihood cross-validation for the identification
of regulatory motifs.

• Application 2: Tree-based prediction of survival based on
microarray data.
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Motivation: Microarray experiments

Problem 1. Prediction of biological and clinical outcomes using
microarray measures of transcript levels or DNA copy number.

Cells respond to various treatments/conditions by activating or
repressing the expression of particular genes. DNA microarrays are
high-throughput biological assays that can be used to measure gene
expression levels on a genomic scale.

E.g. In cancer research, microarrays are used to measure transcript
levels (i.e., mRNA levels) and DNA copy number in tumor samples
for tens of thousands of genes at a time.

Statistical question. Relate microarray measures to biological
and clinical outcomes.
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Motivation: Microarray experiments

• Outcomes (phenotypes): tumor class, response to treatment,
patient survival, affectedness/unaffectedness
— polychotomous or continuous; censored or uncensored.

• Explanatory variables (genotypes): measures of transcript (i.e.,
mRNA) levels for thousands of genes, DNA copy number for
thousands of genes, age, sex, treatment, clinical predictors
— polychotomous or continuous.

Small n, large p.
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Motivation: Microarray experiments

• Selecting a good predictor: linear discriminant analysis (LDA),
trees, support vector machines (SVMs), neural networks, other?

• Selecting a good subset of marker genes: How many genes?
Which genes?

• Assessing the performance of the resulting predictor.
“Clinical outcome X for cancer Y can be predicted accurately
based on gene expression measures.”
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Motivation: Sequence analysis

Problem 2. Identification of regulatory motifs in DNA sequences.

Transcription factors (TF) are proteins that selectively bind to
DNA to regulate gene expression.

Transcription factor binding sites, or regulatory motifs, are short
DNA sequences (5–25 base pairs) in the upstream control region
(UCR) of genes, i.e., in regions roughly 600–1,000 base pairs from
the gene start site (in lower eukaryotes such as yeast).
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Motivation: Sequence analysis

E.g. GAL4 binding sites for different yeast genes (from SCPD).

>YBR019C TCGGCGATACCTTCACCG

>YBR020W CGGGCGACGATTACCCG

>YLR081W TATCGGAGCGTAGGCGGCCGAAC

>YML051W CGGCATCCTACATGCCG

>YOR120W TCGGTTCAGACAGGTCCGG
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Motivation: Sequence analysis

From unaligned DNA sequence data, estimate motif start sites and
base composition, i.e., position specific weight matrix (PWM).

• Likelihood estimation for DNA sequence data.
E.g. Bailey & Elkan (1994), Kechris et al. (2002), Keleş et al.

(2003b), Lawrence & Reilly (1990).

• Prediction of gene expression levels based on sequence features.
E.g. Keleş et al. (2002).

• Selecting a good model for transcription factor binding sites:
Distribution of bases in motif? Distribution of bases in
background sequence? Constraints on PWM? Motif length?
Number of motifs per sequence?

• Assessing the performance of the resulting estimators.
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Motivation: Genetic mapping

Problem 3. Identification of genes associated with complex
phenotypes.

• Outcomes (phenotypes): affectedness/unaffectedness,
quantitative trait, response to treatment, patient survival
— polychotomous or continuous; censored or uncensored.

• Explanatory variables (genotypes): thousands of SNP
genotypes, IBD status, age, sex
— usually polychotomous.
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General estimation road map

Our proposed unified strategy for estimator construction, selection,
and performance assessment is driven by the choice of a loss
function corresponding to the parameter of interest for the full,
uncensored data structure.

The term estimator is used in a broad sense, to provide a common
treatment of multivariate outcome prediction and density
estimation problems based on censored data. Each of these
problems can be dealt with by the choice of a suitable loss function.

General framework: van der Laan & Dudoit (2003).

Special cases and applications: Dudoit & van der Laan (2003),

Keleş et al. (2003a,2003b), van der Laan et al. (2003), Molinaro et al.

(2003).
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Estimation road map: Step 1

Step 1. Definition of the parameter of interest in terms of a loss
function for the observed data.

• Full, uncensored data: define the parameter of interest as the
minimizer of the expected loss, or risk, for a loss function
chosen to represent the desired measure of performance.

• Observed, censored data: apply the general estimating function
methodology of van der Laan & Robins (2002) to map the full,
uncensored data loss function into an observed, censored data
loss function having the same expected value and leading to an
efficient estimator of this risk based on censored data.
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Estimation road map: Step 1

Table 3: Examples of loss functions for different estimation problems.

Estimation problem Parameter Loss function

Regression Conditional mean of an Squared error (L2)

outcome given covariates

Regression Conditional median of an Absolute error (L1)

outcome given covariates

Classification Posterior class probabilities Indicator, Gini,

negative log-likelihood

Density estimation Density Negative log-likelihood

(deviance, Kullback-Leibler)
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Estimation road map: Step 2

Step 2. Construction of candidate estimators based on a loss
function for the observed data.

• Generate a finite collection of candidate estimators for the

parameter of interest based on a sieve of increasing dimension

approximating the complete parameter space.

• For each element of the sieve, the candidate estimator is defined as

the minimizer of the empirical risk based on the observed data loss

function.

E.g. stepwise variable selection;

recursive binary partitioning of the covariate space in tree-based

estimation;

addition/deletion/substitution algorithm (van der Laan & Dudoit, 2003;

Sinisi & van der Laan, 2003).

Page 135



Estimation road map: Step 3

Step 3. Cross-validation estimator selection and performance
assessment based on a loss function for the observed data.

Use cross-validation to estimate risk based on the observed data
loss function and to select an optimal estimator among the
candidates in Step 2.

van der Laan & Dudoit (2003): unified cross-validation
methodology for selection among estimators, finite sample and
asymptotic optimality results for the cross-validation selector for
general data generating distributions, loss functions (possibly
depending on a nuisance parameter), and estimators.
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Full data structure

The full data structure is defined as a multivariate stochastic
process

X ≡ X̄(T ) = {X(t) : 0 ≤ t ≤ T},

where T denotes a possibly random endpoint.

• W : time-independent, or baseline, covariates.

• Z ≡ log T : log survival time.

• Z(t), t ∈ {t0 = 0, . . . , tm−1 = T}, T fixed: an outcome process
of interest, included in X(t).

Denote the distribution of the full data structure X by FX,0.

In many applications, X = (W,Z).
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Observed data structure

The observed data structure is

O ≡
(
T̃ = min(T,C), ∆ = I(T ≤ C), X̄(T̃ )

)
,

for a censoring variable C with conditional distribution G0(·|X),
given the full data structure X.

By convention, if T < C, let C = ∞. One can then rewrite the
observed data structure as O = (X̄(C), C).

The distribution, P0 = PFX,0,G0 , of the observed data structure O
is indexed by the full data distribution FX,0 and the conditional
distribution G0(·|X) of the censoring variable C.
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Observed data structure

Coarsening at random (CAR) is assumed for the censoring
mechanism C

Pr0(C = t | C ≥ t, X̄(T )) = Pr0(C = t | C ≥ t, X̄(t)), for t < T .

If X does not include time-dependent covariates (e.g., X = (W,Z)),
then, under CAR, the censoring time C is conditionally
independent of the survival time T , given baseline covariates W .
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Full data loss function

The parameter of interest, ψ0, is a mapping, ψ : S → <, from a
covariate space S into the real line <. Denote the parameter space
by Ψ.

The parameter ψ0 is defined in terms of a loss function, L(X,ψ), as
(one of) the minimizer(s) of the expected loss, or risk,∫

L(x, ψ0)dFX,0(x) ≡ min
ψ∈Ψ

∫
L(x, ψ)dFX,0(x).

Note that we do not require uniqueness of the risk minimizer,
rather, we simply assume that there is a loss function such that the
parameter of interest ψ0 achieves the minimum risk.
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Full data loss function

• Univariate prediction, X = (W,Z).

– Conditional mean: ψ0(W ) = E0[Z |W ].

Quadratic (L2), or squared error, loss function:

L(X,ψ) = (Z − ψ(W ))2.

– Conditional median: ψ0(W ) = Median0[Z |W ].

Absolute error (L1) loss function: L(X,ψ) = |Z − ψ(W )|.

• Multivariate prediction, X = (W, (Z(t0), . . . , Z(tm−1))).

Conditional mean vector: ψ0(t,W ) = E0[Z(t) |W ],

t ∈ {t0 = 0, . . . , tm−1 = T}.
Quadratic loss function: For a symmetric matrix function

Ω(W )m×m, L(X,ψ) = (Z(·)− ψ(·,W ))>Ω(W )(Z(·)− ψ(·,W )).

• Density estimation, X = (T,W ).

Density: ψ0(T,W ) = f0(T,W ).

Negative log-likelihood loss function: L(X,ψ) = − logψ(T,W ).
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Observed data loss function

The general estimating function methodology of van der Laan &
Robins (2002) maps the full data loss function L(X,ψ) into an
observed data loss function L(O,ψ | η0) with the same risk

∫
L(o, ψ | η0)︸ ︷︷ ︸

Observed data

dP0(o) =
∫

L(x, ψ)︸ ︷︷ ︸
Full data

dFX,0(x).

Here, η0 denotes nuisance parameters G0 and possibly Q0, where
G0 identifies the conditional distribution of the censoring variable
C given X and Q0 = Q(FX,0) identifies the FX -part of the
observed data density under the CAR assumption.
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IPCW loss function

The inverse probability of censoring weighted (IPCW) loss function
corresponding to the full data loss function L(X,ψ) is

L(O,ψ | G) ≡ L(X,ψ)
∆

Ḡ(T |X)
,

where Ḡ is a conditional survival function for C given X and
∆ = I(T ≤ C) is the censoring indicator.

Under CAR, Ḡ(T |X) = Ḡ(T |W ).
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IPCW loss function

In regression, X = (W,Z) and the parameter of interest is the
conditional mean: ψ0(W ) = E0[Z |W ].

Full data loss function:

L(X,ψ) = (Z − ψ(W ))2.

IPCW observed data loss function:

L(O,ψ | G) = (Z − ψ(W ))2
∆

Ḡ(T |W )
.
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DR-IPCW loss function

The doubly robust inverse probability of censoring weighted
(DR-IPCW) loss function is

L(O,ψ | Q,G)

≡ L(X,ψ)∆
Ḡ(T |X)

+
∫
EG,Q

(
L(X,ψ)∆
Ḡ(T |X)

| X̄(u), T̃ ≥ u

)
dMG(u),

where

dMG(u) = I(T̃ ∈ du,∆ = 0)− I(T̃ ≥ u)λc(u|X)du

and Q = Q(FX) refers to the FX -part of the density for the
observed data, O = (X̄(C), C), under the CAR assumption.
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DR-IPCW loss function

Double robustness: The loss functions satisfy∫
L(o, ψ | Q,G)dP0(o) =

∫
L(x, ψ)dFX,0(x),

if either G = G0 or Q = Q0.
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The estimator selection problem

• Suppose we have a learning set of n independent and
identically distributed (i.i.d.) observations, O1, . . . , On, with
Oi ∼ P0. Let Pn be the empirical distribution of O1, . . . , On.

• Let ψ̂k(·) = ψk(· | Pn) ∈ Ψ, k = 1, . . . ,Kn, be a collection of
candidate estimators of the parameter ψ0(·).

E.g. In tree-based estimation, the ψ̂k are obtained by recursive
binary partitioning of the covariate space using one of the
above observed data loss functions; k corresponds to tree size.
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The estimator selection problem

The selection problem. Choose a data adaptive k̂ = k(Pn) so that
the distance, or risk difference,

dn(ψ̂k̂, ψ0) ≡
∫ {

L(o, ψ̂k̂ | η0)− L(o, ψ0 | η0)
}
dP0(o)

(observed data loss function)

=
∫ {

L(x, ψ̂k̂)− L(x, ψ0)
}
dFX,0(x)

(full data loss function)

−→ 0 at asymptotically optimal rate.
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The estimator selection problem

• For the squared error loss function,
L(X,ψ) = L2(X,ψ) = (Z − ψ(W ))2, the risk difference
simplifies to

dn(ψ̂k, ψ0) =
∫ {

L2(x, ψ̂k)− L2(x, ψ0)
}
dFX,0(x)

=
∫ (

ψ̂k(w)− ψ0(w)
)2

dFW,0(w).

• For the negative log-likelihood loss function, the risk difference
is the Kullback-Leibler divergence between ψ̂k and ψ0

dn(ψ̂k, ψ0) = −
∫

log

(
ψ̂k(x)
ψ0(x)

)
ψ0(x)dµ(x).

Page 149



The estimator selection problem

The optimal benchmark selector. Let

k̃n ≡ argmink dn(ψ̂k, ψ0)

denote the minimizer of the distance dn(ψ̂k, ψ0). This optimal
benchmark selector depends on the unknown data generating
distribution P0.

A selector k̂ = k(Pn) is asymptotically equivalent with the optimal
benchmark k̃n if

dn(ψ̂k̂, ψ0)

dn(ψ̂k̃n
, ψ0)

−→ 1 in probability as n→∞.

In particular, then it is asymptotically optimal.

van der Laan & Dudoit (2003): finite sample and asymptotic
optimality results for the cross-validation selector.
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The estimator selection problem

The selection problem involves estimating the conditional risk

θ̃n(k) ≡
∫
L(o, ψk(· | Pn) | η0)dP0(o)

for each candidate estimator ψ̂k(·) = ψk(· | Pn) ∈ Ψ, k = 1, . . . ,Kn.

Cross-validation is a general approach for risk estimation and
estimator selection.
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General framework for cross-validation

The main idea in cross-validation (CV) is to divide the available
learning set into two sets: a training set and a validation set.

Observations in the training set are used to compute (or train) the
estimator(s) and the validation set is used to assess the
performance of (or validate) this estimator(s).

The cross-validation estimator ψ̂k̂ is chosen to have the best
performance on the validation set.
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General framework for cross-validation

To derive a general representation for the cross-validation selector
k̂, we introduce a binary random n-vector, or split vector,
Sn ∈ {0, 1}n, independent of the empirical distribution Pn.

A realization of Sn = (Sn,1, . . . , Sn,n) defines a particular split of
the learning sample of n observations into a training set and
validation set

Sn,i =

 0, ith observation is in the training sample,

1, ith observation is in the validation sample.

The particular distribution of Sn defines the type of
cross-validation procedure.
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General framework for cross-validation

Let P 0
n,Sn

and P 1
n,Sn

denote the empirical distributions of the
training and validation sets, respectively, and let p = pn = n1/n be
the proportion of observations in the validation set.

A general definition of the cross-validation selector is

k̂ ≡ argmink ESn

∫
L(o, ψk(· | P 0

n,Sn
) | η0

n,Sn︸ ︷︷ ︸
Training

) dP 1
n,Sn

(o)︸ ︷︷ ︸
Validation

= argmink ESn

∑
{i:Sn,i=1}

L(Oi, ψk(· | P 0
n,Sn

) | η0
n,Sn

).

Here, ψk(· | P 0
n,Sn

) and η0
n,Sn

denote, respectively, estimators for
the parameter of interest ψ0 and the nuisance parameter η0, using
only the training set.
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General framework for cross-validation

Validation set

Assess performance

Training set

Compute estimator

Figure 1: Five-fold cross-validation. Sn has 5 realizations.
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General framework for cross-validation

The particular distribution of the split vector Sn defines the type of
cross-validation procedure. This representation covers many types
of CV procedures.

• Leave-one-out cross-validation (LOOCV). Each observation in the

learning set is used in turn as the validation set and the remaining

n− 1 observations are used as the training set. The corresponding

distribution of Sn places mass 1/n on each the n binary vectors

sn = (sn,1, . . . , sn,n) such that
∑
i sn,i = 1 (pn = 1/n).

• V -fold cross-validation. The learning set is randomly divided into V

mutually exclusive and exhaustive sets, each used in turn as the

validation sets. The corresponding distribution of Sn places mass

1/V on each of V binary vectors svn = (svn,1, . . . , s
v
n,n), v = 1, . . . , V ,

such that
∑
i s
v
n,i ≈ n/V and

∑
v s

v
n,i = 1 (pn = 1/V ).
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General framework for cross-validation

• Monte Carlo cross-validation. The learning set is repeatedly and

randomly divided into two sets, a training set of n0 = n(1− p)

observations and a validation set of n1 = np observations. The split

vectors Sn are drawn at random with replacement from a

distribution that places mass 1/
(
n
n1

)
on each binary vector such that∑

i sn,i = n1.

• Bootstrap-based cross-validation. The training sets are based on

bootstrap samples and the validation sets on the corresponding

left-out samples. E[pn] = E[
∑
i Sn,i/n] = (1− 1/n)n ≈ e−1 ≈ .368.

E.g. .632 bootstrap estimator (Efron, 83).
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Honest cross-validation

Prediction error rates, or related measures, are usually reported to

• compare the performance of different predictors;

• support statements such as “Clinical outcome X for cancer Y
can be predicted accurately based on microarray gene expression
measures.”

Page 158



Honest cross-validation

It is common practice in microarray experiments to screen genes
and fine-tune predictor parameters (e.g., number of neighbors k in
nearest neighbor classification, kernel in SVMs) using all the
learning set and then perform cross-validation only on the predictor
building portion of the process.

=⇒ The reported error rates are usually biased downward and give
an overly optimistic view of the predictive power of microarray
expression measures.

=⇒ Predictors are not compared on an equal footing.
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Honest cross-validation

Prediction error rates (risk) can estimated by cross-validation
(CV), BUT ...

• These estimates relate only to the experiment that was
cross-validated.

• It is essential to perform cross-validation on the entire
predictor training process, including feature selection and other
training decisions (e.g., choice for the number of neighbors in
k-NN, kernel in SVMs).

• Otherwise, risk estimates can be severely biased downward, i.e.,
overly optimistic.

Ref. Ambroise & McLachlan (2002), Dudoit & Fridlyand (2003),
West et al. (2001).
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Honest cross-validation

Resubstitution estimation. The entire learning set is used to
perform feature selection, build the classifier, and estimate
classification error.

Internal cross-validation. Feature selection is done on the entire
learning set, CV is applied only to the classifier building process.

External cross-validation. CV is applied to the feature selection
AND the classifier building process.
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Honest cross-validation
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Figure 2: Estimates of classification error by leave-one-out cross-
validation. Breast tumor nodal dataset, 25 nodal+ and 24 nodal–
tumors (West et al., 2001).
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Estimator selection using cross-validation

Define the distance, or risk difference, for estimators based on
training samples of size n(1− p) as

dn(1−p)(ψ̂k, ψ0) ≡ ESn

∫ {
L(o, ψk(· | P 0

n,Sn
) | η0)− L(o, ψ0(·) | η0)

}
dP0(o).

The selector k̂ aims to minimize this unknown distance.

Denote the unknown minimizer, i.e., the comparable optimal
benchmark selector for n(1− p) observations by

k̃n(1−p) ≡ argmink dn(1−p)(ψ̂k, ψ0).
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Estimator selection using cross-validation

Theorem 1. (Stated in special case of known η0, L(O,ψ | η0) = L(O,ψ)).
Suppose that
A1. the loss function L(O,ψ) is uniformly bounded by M1, and
A2. there exists an 0 ≤M2 <∞ so that for all k∫ {

L(o, ψk(· | P 0
n,Sn

))− L(o, ψ0(·))
}2
dP0(o)

≤M2

∫ {
L(o, ψk(· | P 0

n,Sn
))− L(o, ψ0(·))

}
dP0(o) a.s.

Finite sample result. For any δ > 0 and constant C(M1,M2, δ)

0 ≤ Edn(1−p)(ψ̂k̂, ψ0) ≤ (1 + 2δ)Edn(1−p)(ψ̂k̃n(1−p)
, ψ0)

+ C(M1,M2, δ)
1 + log(Kn)

np
.
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Estimator selection using cross-validation

Asymptotic optimality. If

log(Kn)

(np)Edn(1−p)(ψ̂k̃n(1−p)
, ψ0)

−→ 0, as n→∞,

then
Edn(1−p)(ψ̂k̂, ψ0)

Edn(1−p)(ψ̂k̃n(1−p)
, ψ0)

−→ 1, as n→∞.
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Estimator selection using cross-validation

Corollary. In addition to the conditions of Theorem 1, suppose
that, as n→∞, p = pn → 0 slowly enough that

log(Kn)

(np)Edn(1−p)(ψ̂k̃n(1−p)
, ψ0)

−→ 0,

and
Edn(ψ̂k̃n

, ψ0)

Edn(1−p)(ψ̂k̃n(1−p)
, ψ0)

−→ 1.

Then,
Edn(1−p)(ψ̂k̂, ψ0)

Edn(ψ̂k̃n
, ψ0)

−→ 1, as n→∞.

That is, the data adaptive CV selector k̂ is asymptotically optimal.
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Estimator selection using cross-validation

• The corresponding convergence in probability of the ratios of
risk differences follows by noting that E|Zn| = O(g(n)) implies
Zn = OP (g(n)), for a positive function g(n) .

• A more general version of Theorem 1 was derived for loss
functions that depend on a nuisance parameter η0.

• An analog of Theorem 1, which does not require Assumption
A2, was derived. In this case, convergence is shown to be
O(log(Kn)/

√
np) rather than O(log(Kn)/np).

van der Laan & Dudoit (2003)
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Estimator selection using cross-validation

• Both theorems consider general distributions of Sn, i.e., general
cross-validation procedures with an arbitrary proportion pn of
observations included the validation sets.

• The finite sample results hold for any pn, while the asymptotic
results require that npn →∞; the later condition rules out
LOOCV.

• The theorems apply to general distributions P0, general loss
functions L(O,ψ | η0), and general estimators ψ(· | Pn).
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Estimator performance assessment

Consider a particular estimator ψ̂(·) = ψ(· | Pn) and loss function
L(O,ψ | η0) = L(O,ψ) with known η0.

Cross-validation risk estimator (observable random variable)

θ̂n(1−p) ≡ ESn

∫
L(o, ψ(· | P 0

n,Sn
))dP 1

n,Sn
(o).

Conditional risk, n(1− p) observations (unknown random variable)

θ̃n(1−p) ≡ ESn

∫
L(o, ψ(· | P 0

n,Sn
))dP0(o).

Conditional risk, n observations (unknown random variable)

θ̃n ≡
∫
L(o, ψ(· | Pn))dP0(o).

Asymptotic risk (unknown parameter)

θ ≡
∫
L(o, ψ(· | P0))dP0(o).
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Asymptotic linearity of CV risk estimator

Theorem. Suppose the loss function L(O,ψ) is uniformly bounded
by M1 and

ESn

√√√√∫{L(o, ψ(· | P 0
n,Sn

))− L(o, ψ(· | P0))
}2

dP0(o)

pn
= oP (1).

Then

θ̂n(1−p) − θ̃n(1−p) =
1
n

n∑
i=1

{L(Oi, ψ(· | P0))− θ}+ oP (1/
√
n).
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Risk confidence intervals

An approximate asymptotic (1− α)100% confidence interval for the
conditional risk θ̃n(1−p) is given by

θ̂n(1−p) ± z1−α/2
σ̂n√
n
,

where

σ̂2
n =

∫
(IC(o | Pn))2dPn(o),

IC(o | Pn) = L(o, ψ(· | Pn))−
∫
L(o, ψ(· | Pn))dPn(o),

and Φ(zα/2) = 1− α/2 for the standard normal cumulative
distribution function Φ(·).
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Simulation study: Consistency and asymptotic linearity
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Figure 3: Convergence to zero of θ̂n(1−p) − θ̃n(1−p). X|Y ∼ N(Y 12, I2),

Y ∼ B(1/2), LDA, rpart, two- and ten-fold CV, 200 simulations.
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Simulation study: Risk confidence intervals
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Figure 4: Risk confidence intervals. X|Y ∼ N(Y 12, I2), Y ∼ B(1/2),
n = 100, 200, 500, 1000, LDA, ten-fold CV, θ̃n(1−p) and θ̃n.
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Applications of estimation road map

The above results hold for general cross-validation procedures and
apply to general distributions P0, general loss functions
L(O,ψ | η0), and general estimators ψ(· | Pn). The following
problems can be addressed within our general estimation
framework by choosing a suitable loss function.

1. Prediction of polychotomous and continuous outcomes.

2. Density estimation.

3. Predictor based on right-censored outcomes.

4. Survival function estimation.

5. Prediction of multivariate outcomes.

6. Counterfactual prediction in causal inference.

van der Laan & Dudoit (2003)
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Example 1: Predictor selection

Suppose we have a learning set of n i.i.d. observations
O = (W,Z) ∼ P0, where Z is an outcome of interest and W a
vector of explanatory variables.

Consider the quadratic loss function

L(O,ψ) = (Z − ψ(W ))2.

The parameter of interest, which minimizes the risk

E0[L(O,ψ)] =
∫

(z − ψ(w))2 dP0(o),

is the conditional expectation ψ0(W ) = E0[Z |W ].
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Example 1: Predictor selection

Given candidate predictors ψ̂k = ψk(· | Pn), the risk difference for
the quadratic loss simplifies to

dn(ψ̂k, ψ0) =
∫

(ψk(w | Pn)− ψ0(w))2dFW,0(w).

The cross-validation selector is given by

k̂ = argmink ESn

∫
(z − ψk(w | P 0

n,Sn
))2dP 1

n,Sn
(o)

= argmink ESn

∑
{i:Sn,i=1}

(Zi − ψk(Wi | P 0
n,Sn

))2.
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Example 1: Predictor selection

Prediction of biological and clinical outcomes using microarray
gene expression measures or SNP marker genotypes.

• Outcomes (phenotypes), Z: tumor class, response to
treatment, patient survival, affectedness/unaffectedness
— polychotomous or continuous; censored (see Example 3,
below) or uncensored.

• Explanatory variables (genotypes), W : measures of transcript
(i.e., mRNA) levels for thousands of genes, DNA copy number
for thousands of genes, SNP haplotypes, age, sex, treatment,
clinical predictors
— polychotomous or continuous.
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Example 1: Predictor selection

Prediction of gene expression levels using DNA sequence data to
identify transcription factor binding sites.

Motif A Motif B Motif C

... Gene 

Expression
ACGTACACGTAAACGTTACTGTAATTTACGTGGACAAA......

• Outcomes (phenotypes), Z: microarray gene expression
measures — multivariate outcomes.

• Explanatory variables (genotypes), W : DNA sequence in
upstream control region of genes.

Keleş et al. (2002). Bioinformatics.
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Example 2: Density estimator selection

Suppose we have a learning set of n i.i.d. observations
O ∼ f0 ≡ dP0

dµ . Consider the log-likelihood loss function (a.k.a.
cross-entropy loss, deviance)

L(O, f) = − log(f(O)).

The parameter of interest, which minimizes the risk

E0[−L(O, f)] = −
∫

log f(o)f0(o)dµ(o),

is the density itself, ψ0 = f0.
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Example 2: Density estimator selection

Given candidate density estimators, ψ̂k = fk(· | Pn), of ψ0 = f0, the
risk difference is the Kullback-Leibler divergence between fk(· | Pn)
and f0

dn(ψ̂k, ψ0) = −
∫

log
(
fk(o | Pn)
f0(o)

)
f0(o)dµ(o).

The cross-validation selector is given by

k̂ = argmink − ESn

∫
log fk(o | P 0

n,Sn
)dP 1

n,Sn
(o)

= argmink − ESn

∑
{i:Sn,i=1}

log fk(Oi | P 0
n,Sn

).
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Example 2: Density estimator selection

Consider the special case when O = (W,Z), with
Z|W ∼ N(ψ0(W ), σ2), ψ0(W ) = E0[Z|W ], and known variance σ2.

The conditional density of Z given W , corresponding to a
candidate estimator ψk(·|Pn), is denoted by fk(z;w | Pn).

Then, the risk for the log-likelihood loss function is equal to the
risk based on the squared error loss (up to + and × constants)

−
∫

log fk(z;w | Pn)f0(o)dµ(o)

= −
∫

log

{
1√

2πσ2
exp

(
− 1

2σ2
(z − ψk(w|Pn))2

)}
f0(o)dµ(o)

=

∫
(z − ψk(w|Pn))2f0(o)dµ(o).
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Example 2: Density estimator selection

Likelihood-based cross-validation for bandwidth selection in kernel
density estimation.

• The true density f0 is standard normal with compact support in the

interval [−2, 2].

• B = 20 replicate datasets were generated from f0 for six different

sample sizes, n =50, 100, 200, 400, 800, 1600.

• The Gaussian kernel density estimator, f̂k(·) = fk(· | Pn), for a

learning set x1, · · · , xn is given by

f̂k(x) =
1

nk

n∑
i=1

φ
(x− xi

k

)
,

where φ(.) is the standard normal density function and k is the

bandwidth. Kn = 100 different bandwidth values k were considered

from the interval [0.02, 2], so that the difference between any two

consecutive bandwidth values is 0.02.
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Example 2: Density estimator selection
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Figure 5: dn(1−p)(ψ̂k̂,ψ0)

dn(1−p)(ψ̂k̃n(1−p)
,ψ0)

vs. n, for p = 1/10. The bandwidth k̂

was selected using ten-fold CV (p = 1/10), for 20 replicate datasets
at each of six sample sizes, n.
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Example 2: Density estimator selection

n
50 100 200 400 800 1600

1.542497 1.400015 1.150882 1.139386 1.068780 1.033064

Table 4: Êdn(1−p)(ψ̂k̂,ψ0)

Êdn(1−p)(ψ̂k̃n(1−p)
,ψ0)

vs. n, for p = 1/10. The estimated

distance ratios are based on 20 replicate datasets at each of the six
different sample sizes n. The bandwidth k̂ was selected using ten-fold
CV (p = 1/10).
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Example 2: Density estimator selection
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Figure 6: Cross-validation density estimates f̂k̂ and true density f0.
The cross-validation kernel density estimate fk̂(· | Pn) is shown for
six sample sizes, n = 50, 100, 200, 400, 800, 1600, for one simulated
dataset. The bandwidth k̂ was selected using ten-fold CV (p = 1/10).
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Example 2: Density estimator selection

n
50 100 200 400 800 1600

0.05 1.493594 1.465201 1.168274 1.115338 1.089441 1.047685

0.1 1.531736 1.391971 1.144236 1.136916 1.075563 1.048454

0.15 1.577241 1.473550 1.118831 1.117599 1.076197 1.061919

0.20 1.518429 1.417260 1.120498 1.100698 1.065835 1.064060

0.25 1.302580 1.443560 1.111674 1.182325 1.060759 1.100572

p 0.30 1.430726 1.388704 1.148916 1.119423 1.080356 1.083632

0.35 1.238741 1.414966 1.076628 1.093445 1.092477 1.112602

0.40 1.477980 1.617694 1.200306 1.123990 1.091412 1.091008

0.45 1.411283 1.483116 1.090528 1.142125 1.134810 1.143657

0.50 1.320979 1.398095 1.099359 1.136470 1.146952 1.167325

Table 5: V -fold likelihood cross-validation:
Êdn(ψ̂

k̂(p),ψ0)

Êdn(ψ̂
k̃n
,ψ0)

vs. n and p.

Estimated distance ratios are based on 20 replicate datasets at six different

sample sizes n and for ten different validation set proportions p = 1/V .
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Example 2: Density estimator selection

n
50 100 200 400 800 1600

0.05 21.778985 30.591547 5.366258 3.488738 2.147304 1.287172

0.1 4.969151 8.139912 3.709904 2.105173 1.948626 1.291611

0.15 1.972465 5.234631 2.283455 1.831317 1.628340 1.153562

0.20 1.836114 10.036376 2.465654 1.377272 1.370639 1.093183

0.25 2.495359 4.262036 1.246727 1.232388 1.209813 1.092931

p 0.30 2.260952 4.298054 1.410498 1.149826 1.215430 1.123646

0.35 1.553013 3.862468 1.511450 1.111143 1.165148 1.151871

0.40 1.446852 1.615702 1.276998 1.123451 1.146859 1.113719

0.45 1.583617 1.757668 1.263186 1.170124 1.112150 1.133443

0.50 1.333555 2.193936 1.258745 1.164263 1.149889 1.175700

Table 6: Single-split likelihood cross-validation:
Êdn(ψ̂

k̂(p),ψ0)

Êdn(ψ̂
k̃n
,ψ0)

vs. n and

p. Estimated distance ratios are based on 20 replicate datasets at six

different sample sizes n and for ten different validation set proportions p.
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Example 2: Density estimator selection
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Figure 7: V -fold vs. single split CV:
Êdn(ψ̂k̂(p),ψ0)

Êdn(ψ̂k̃n
,ψ0)

vs. n. Estimated

distance ratios are based on 20 replicate datasets at six different
sample sizes n and for ten different validation set proportions p.
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Application 1: Identification of regulatory motifs

Incorporating biological knowledge in the identification of
regulatory motifs in DNA sequences.

• Palindromic binding sites.
E.g. CACGTG with reverse complement CACGTG.

• Binding sites with gaps.
E.g. GCGNNNNNNNNNNNNTAG.

• Information content profile of the binding site PWM. The
information content (IC) of the PWM (pwj) at position w is

IC(w) = 2 +
4∑
j=1

pwj log2 pwj = 2− Entropy(w) ∈ [0, 2].

The information content profile of a PWM is a measure of a
site’s tolerance for substitution: high IC, low tolerance.
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Application 1: Identification of regulatory motifs

• Direct relationship between the structural footprint of a
protein on DNA and the information content profile of the
PWM (Mirny & Gelfand, 2002).

• Transcription factors that have similar structures bind to sites
with similar information content profiles (Eisen, 2002).

• The specific nature of TF–DNA interactions imposes
constraints on the types of sequences that are likely to be TF
binding sites (Eisen, 2002).
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Application 1‘: Identification of regulatory motifs

E.g. GAL4 binding sites for different yeast genes (from SCPD).

>YBR019C TCGGCGATACCTTCACCG

>YBR020W CGGGCGACGATTACCCG

>YLR081W TATCGGAGCGTAGGCGGCCGAAC

>YML051W CGGCATCCTACATGCCG

>YOR120W TCGGTTCAGACAGGTCCGG
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Application 1: Identification of regulatory motifs
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Figure 8: GAL4 binding sites sequence logo. www-lmmb.ncifcrf.

gov/~toms/sequencelogo.html.
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Application 1: Identification of regulatory motifs

Figure 9: GAL4 binding. From www.cryst.bbk.ac.uk/PPS2/.
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Application 1: Identification of regulatory motifs
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Figure 10: Information content profiles. GAL4, CRP, ABF1, PURR.
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Application 1: COMODE

Keleş et al. (2003b). COnstrained MOtif DEtection –
COMODE. Likelihood-based method for detecting structured
regulatory motifs in biological sequences.

• Unaligned DNA sequences are distributed according to
independent mixtures of multinomials at each position.

• Specific structural constraints on the motifs are enforced as
constraints on the entropy/information content profile and/or
individual entries of their position specific weight matrix
(PWM).

• Estimation of motif start site and PWM involves constrained
maximum likelihood estimation for a multinomial mixture
model.
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Application 1: COMODE

• Selecting a good model for regulatory motifs: Distribution of
bases in motif? Distribution of bases in background sequence?
Constraints on PWM? Motif length? Number of motifs per
sequence?

• Assessing the performance of the resulting estimators.

=⇒ likelihood-based cross-validation.
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Application 1: COMODE

Examples of constraints on PWM.

• Constraints on the information content profile.
E.g. parametric model such as

IC(w;φ1, φ2, w
∗) = φ1 − |w − w∗| tanφ2, w = 1, . . . ,W.

Structured motifs refer to binding sites with constraints on the
IC of the PWM.

• Constraints on the information content of specific positions.
E.g. IC(w) > q for a given q and w.

• Constraints on specific nucleotide frequencies at a particular
position.
E.g. pw1 > 0.8 =⇒ preference for nucleotide A at position w.
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Application 1: COMODE

IC(w)

1 W ww*

θ1
θ2

2121 tan|*|*),,;( θθθθ wwwwIC −−=

Ww ,...,1=

Figure 11: Example of parameterization for the IC profile of a motif
PWM.
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Application 1: COMODE

Input Output

• n unaligned sequences • Estimated PWM

• Motif length W • Predicted start site

• PWM constraint functions for each input sequence

Available from Sündüz Keleş, www.stat.berkeley.edu/~sunduz.
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Application 1: COMODE

B = 100 datasets, each comprising n = 30 sequences of length
L = 100, were generated using an i.i.d. background model, with an
instance of the weak motif inserted in a varying percentage
(F = 100%, 75%, 50%, 25%) of the sequences.
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Application 1: COMODE

Three different types of constraints for the motif IC profile were
supplied to COMODE.

• c.zoops-I: piecewise linear IC profile, V-shaped (two additional
parameters θ1 and θ2).

• c.zoops-II: ordered IC profile, first and last three positions have
equal high IC, middle positions have equal low IC,
HHHLLLLLLLHHH.

• c.zoops-III: piecewise linear IC profile, hat-shaped, mirror
image of c.zoops-I (two additional parameters θ1 and θ2).

Profiles used for c.zoops-I and c.zoops-II roughly match the true IC
profile, the profile for c.zoops-III is misspecified.
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Application 1: COMODE

A sensitivity measure was computed as follows for each method in
each of the B simulated datasets

ŝensb =
|Kb ∩ K̂b|
|Kb|

,

where
Kb = {set of true motif sites in dataset b},
K̂b = {set of predicted motif sites in dataset b}.
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Application 1: COMODE

zoops c.zoops−I c.zoops−II c.zoops−III

0
20

40
60

80
10

0

F=100%

zoops c.zoops−I c.zoops−II c.zoops−III

0
20

40
60

80
10

0

F=75%

zoops c.zoops−I c.zoops−II c.zoops−III

0
20

40
60

80
10

0

F=50%

zoops c.zoops−I c.zoops−II c.zoops−III

0
20

40
60

80
10

0

F=25%

Figure 12: COMODE. Boxplot of sensitivity measures for ZOOPS,

C.ZOOPS-I, C.ZOOPS-II, and C.ZOOPS-III.
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Application 1: Likelihood CV for motif structure selection

We have applied two-fold likelihood-based cross-validation to
choose among these 4 models at F = 100%.

Out of the B = 100 datasets, c.zoops-I was selected 61 times and
c.zoops-II was selected 39 times.
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Application 1: Likelihood CV for motif width selection

B = 200 datasets, each comprising n = 20, 100 sequences of length
L = 600, were generated using an i.i.d. background model. A motif
of width 10 was inserted in each of the sequences.

Motif start sites and PWM were estimated using COMODE with
no constraints on PWM, for motif widths ranging from 6 to 15bp.

Two-fold (p = 0.5) and five-fold (p = 0.2) cross-validation were
used to select motif width.
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Application 1: Likelihood CV for motif width selection

n = 20 n = 100
2-fold 5-fold 2-fold 5-fold

6 0 20 0 22

7 24 42 0 10

8 40 10 15 14

9 11 17 3 3

w 10 121 98 147 142

11 0 10 35 9

12 0 3 0 0

13 0 0 0 0

14 0 0 0 0

15 1 0 0 0

Table 7: Likelihood CV for motif width selection. Number of simulations

(out of B = 200) each motif width was selected, for sample sizes n =

20, 100 and using two- and five-fold CV. The true motif width is 10.
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Application 2: Tree-based estimation with censored data

Tree-based estimation procedures, such as the Classification and
Regression Trees (CART) of Breiman et al. (1984), can be
formulated in terms of the three main steps of our roadmap and
correspond to a particular choice of candidates in Step 2.

Step 1. Loss-based definition of parameter of interest.
The parameter of interest is defined as the risk minimizer for a
particular loss function.

E.g. Regression trees: conditional expected value of an outcome
given covariates −→ squared error loss function.
Classification trees: posterior class probabilities −→ indicator loss
function, also Gini and negative log-likelihood (entropy).
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Application 2: Tree-based estimation with censored data

Step 2. Node splitting and tree pruning.

• The sieve of candidate estimators is generated by recursive
binary partitioning of a suitably defined covariate space into
nodes, using a loss-based node splitting rule.
E.g. MSE, Gini, entropy.

• A loss-based pruning algorithm (minimal cost-complexity) is
applied to yield a nested decreasing sequence of subtrees.
(Cf. forward selection followed by backward deletion.)

• For each candidate tree, an estimator is returned for each set in
the resulting partition (i.e., each terminal node, or leaf) by
minimizing the empirical risk.

Step 3. Cross-validation estimator selection.
Selection of a ’right-sized’ tree by cross-validation.
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Application 2: Tree-based estimation with censored data

The outcome is a right-censored survival time.

Parameters of interest include

• conditional expected value of (log) survival time given
covariates −→ squared error loss function;

• conditional median of (log) survival time given covariates −→
absolute error loss function;

• conditional density (survival or hazard function) of survival
time give covariates −→ negative log-likelihood loss function.
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Application 2: Tree-based estimation with censored data

Problem. How to evaluate the loss function with censored data?

Common approaches for tree-based regression and density
estimation bypass the risk estimation problem for censored
outcomes by altering the node splitting, tree pruning, and
performance assessment criteria in manners that are specific to
right-censored survival times.

Page 210



Application 2: Tree-based estimation with censored data

Within-node homogeneity.

• Breiman (2003). Partition of time-covariate space using negative

log-likelihood loss for a constant hazards model within nodes.

• Davis & Anderson (1989). Negative log-likelihood loss for an

exponential model within nodes.

• Gordon & Olshen (1985). Lp, Lp Wasserstein, and Hellinger

distances for within-node Kaplan-Meir estimates of survival

distribution.

• LeBlanc & Crowley (1992). Negative log-likelihood loss based on

first step of a full likelihood estimation procedure for a Cox

proportional hazards model within nodes.

Default method in R rpart function (Therneau & Atkinson, 1997).

• Pittman et al. (2003). Bayesian tree prediction, node splitting rule

based on Bayes’ factors for Weibull models. On transformed data,

use exponential survival distribution and conjugate Gamma priors.
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Application 2: Tree-based estimation with censored data

Between-node heterogeneity.

Ciampi et al. (1986) and Segal (1988) employ two-sample log-rank
test statistics for between-node heterogeneity measures.

Abandoning the notion of risk (within-node homogeneity) leads to
significant deviations from the standard CART framework for node
splitting and tree pruning.
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Application 2: Tree-based estimation with censored data

Using a loss function that is specific to the parameter of interest.
One may be interested in other parameters than the conditional
survival distribution, such as the conditional mean or median
survival time.

In such cases, gains in accuracy may be achieved by employing a
loss function that is specific to the parameter of interest (e.g., L2 or
L1 loss).

Risk estimation for performance assessment. Existing methods do
not provide means for assessing risk for arbitrary loss functions.
Current approaches typically rely on the negative log-likelihood loss
function or ignore censored observations altogether.
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Application 2: Tree-based estimation with censored data

For any choice of full data loss function L(X,ψ), one can use the
above IPCW or DR-IPCW observed data loss functions
L(O,ψ | η0) for node splitting, tree pruning, and performance
assessment by cross-validation.

Note that in the absence of censoring, i.e., when ∆ = 1, then
L(O,ψ | η0) = L(X,ψ) for both the IPCW and the DR-IPCW loss
functions.

This ensures that the censored and full data estimators coincide
when there is no censoring.
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Application 2: Tree-based estimation with censored data

Estimation road map

• Step 1. Specify a full data loss function L(X,ψ) for the
parameter of interest; obtain the corresponding IPCW
observed data loss function L(O,ψ | η0).

• Step 2. Apply standard node splitting and tree pruning
procedures with the new IPCW loss function.

• Step 3. Use cross-validation with the IPCW loss function to
select the right-sized tree.

Possibly bagging or boosting.
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Application 2: Tree-based estimation with censored data

The proposed tree-based estimation procedures with the IPCW loss
function can be implemented using the R rpart package (Therneau
& Atkinson, 1997), by supplying the IPCW to the weights

argument of the rpart function.

The IPCW and DR-IPCW loss functions can be used for any type
of prediction method, including standard linear regression, logic
regression, and bagging and boosting procedures.
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Application 2: Simulation study

Comparison of survival trees built using two different loss functions
for node splitting and tree pruning

• NLL PH : negative log-likelihood loss function for Cox
proportional hazards model (LeBlanc & Crowley, 1992),
rpart default for survival data, method=’’exp’’;

• square IPCW : IPCW squared error loss function,
rpart with method=’’anova’’, weights=IPCW.

For each loss function, obtain a final partition of the covariate
space by five-fold cross-validation. Consider two within-node
survival estimation methods

• IPCW mean, squared error loss function;

• Kaplan-Meier (KM) median, absolute error loss function.
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Application 2: Simulation study

• Full data structure, X = (W,Z): log-survival time
Z = log T = W 2 + ε, where W ∼ U(0, 1), ε ∼ N(0, σ2),
σ2 = 0.25.

• Censoring variable, C: from uniform distributions.

• One hundred simulated learning samples were generated from
an observed data distribution with 20% censoring, for sample
sizes n = 250, 600, 1250, and 6000.
Risk estimates are based on test samples of size N = 5000
generated from the full data distribution.
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Application 2: Simulation study

Table 8: Ratios of average test sample risk for the square IPCW loss
function to the NLL PH loss function, for two different within-node
survival estimation methods.

Sample Survival estimation method

size, n KM median IPCW mean

250 0.9422 0.8838

600 0.9524 0.9062

1250 0.9629 0.9244

6000 0.9767 0.9533

N. B. Ratios less than one correspond to improved accuracy for trees

based on IPCW loss function — Risk square IPCW/Risk NLL PH.
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Application 2: Breast cancer survival and CGH copy number

Comparative genomic hybridization (CGH) is a microarray-based
technique for measuring genome-wide DNA copy number.

DNA copy number alterations have been linked to a number of
cancers: gains can over-express oncogenes, losses can inactivate
tumor suppressor genes.

In cancer research, CGH analysis produces thousands of DNA copy
number measurements for each patient, in addition to
epidemiological, histological, and pathological variables.

Predict clinical outcome from thousands of explanatory variables.
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Application 2: Breast cancer survival and CGH copy number

CGH study of breast cancer patients (Waldman et al., in
preparation).

• 152 patients, all with initial occurrences of breast cancer
(invasive ductal carcinoma).

• Outcome: Time to recurrence (in months) — 52 patients
recurred, censoring percentage of 66%.

• Explanatory variables:
epidemiological variables (e.g., age at diagnosis, race),
histopathological variables (e.g., tumor stage, grade),
and DNA copy number measures from a CGH array with 2,254
bacterial artificial chromosomes (BAC).
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Application 2: Breast cancer survival and CGH copy number

• The 152 observations were split at random into a learning set
and a test set of 128 and 24 observations, respectively.

• Trees were grown using the learning set with the IPCW
squared error loss function.

• Five-fold cross-validation was used to select the ’best’ tree.

• The survival function Ḡ0 in the IPCW loss function was
estimated separately for each training sample by fitting a Cox
proportional hazards model to the epidemiological and
histopathological variables (coxph function).

• Overall performance was assessed on the test sample.
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Application 2: Breast cancer survival and CGH copy number

BAC 294 < 0.02

BAC 1226 -0.16

4.328

n  = 37 

n  = 17 

2.944

2.742

3.14 3.743

n  = 19 

n  = 19 n  = 36 

BAC 529 -.01

Chromosomal

Location

BAC 294 3q26

BAC 1226 10q22

BAC 529 5q11

BAC 542 5q21

BAC 542 < -0.12

Figure 13: Breast cancer survival and CGH copy number dataset.
Learning set survival tree, IPCW mean log survival time (in months).
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Application 2: Breast cancer survival and CGH copy number

The selected two-split tree is based on BACs that fall in
chromosomal regions known to contain genes related to breast
cancer.

This tree suggests that copy number gains in both regions are
associated with longer survival.

Improved prediction accuracy and more information on
chromosomal regions related to breast cancer survival may be
obtained from aggregation methods such as bagging and boosting
and from more aggressive strategies for generating candidate
estimators.
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Application 2: Summary

• The choice of loss function for node splitting, tree pruning, and
within node estimation can have a large impact on accuracy.

• Gains in accuracy are obtained by using a loss function that is
specific to the parameter of interest.
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Ongoing work

• More extensive study of the properties of different loss
functions for multivariate outcome prediction and density
estimation (Step 1).

• More aggressive strategies for generating candidate estimators
(Step 2): addition/deletion/substitution algorithm (van der
Laan & Dudoit, 2003; Sinisi & van der Laan, 2003).

• Loss-based variable importance statistics.

• R package.
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• S. Keleş, M. J. van der Laan, and S. Dudoit (2003a). Asymptotically Optimal Model Selection
Method for Regression on Censored Outcomes. Division of Biostatistics, UC Berkeley, Technical
Report #124. CV in prediction with censored data
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Example 3: Predictor selection for right-censored outcomes

Let X = (Y,W ) ∼ FX,0 be the full data structure of interest, where
Y = log(T ) is a log survival time and W a vector of explanatory
variables (covariates).

Let C be a right-censoring time, with conditional distribution
G0(· | X). Assume C ⊥ Y , given W .

Suppose we have a learning set of n i.i.d. observations of the
right-censored data structure
O =

(
min(Y,C), ∆ = I(Y ≤ C), W

)
∼ P0 = PFX,0,G0 .
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Example 3: Predictor selection for right-censored outcomes

Consider the quadratic loss function

L(X,ψ) = L2(X,ψ) = (Y − ψ(W ))2.

The parameter of interest, which minimizes the risk for this loss
function, is the conditional expectation ψ0(W ) = E0[Y |W ].

ψ0 = argminψ

∫
L2(x, ψ)dFX,0(x)

= argminψ EFX,0(Y − ψ(W ))2

= argminψ EP0

{
L2(X,ψ)

∆
Ḡ0(Y | X)

}
.
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Example 3: Predictor selection for right-censored outcomes

General problem. The loss function is a function of the full data
structure X = (Y,W ) — unobservable.

Solution. The general estimating function methodology for
censored data of van der Laan & Robins (2002) maps full data
estimating functions D(X) into observed data estimating functions
IC(O | Q(FX), G,D), indexed by nuisance parameters G and
(possibly) Q(FX). The estimating functions satisfy

EP0IC(O | Q,G,D) = EFX,0D(X) if G = G0 or Q = Q0.

Thus, we can choose the following loss function for the observable
right-censored data structure O

L(O,ψ | η0 = (Q0, G0)) = IC(O | Q0, G0, L2(·, ψ)).
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Example 3: Predictor selection for right-censored outcomes

Inverse probability of censoring weighted (IPCW) estimating
function

IC(O | G,D) = D(X)
∆

Ḡ(Y | X)
.

For candidate predictors ψ̂k = ψk(· | Pn), the cross-validation
selector based on the IPCW estimating function is given by

k̂ = argmink ESn

∑
{i:Sn,i=1}

(Yi − ψk(Wi | P 0
n,Sn

))2
∆i

Ḡ0
n,Sn

(Yi |Wi)
.
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Example 3: Predictor selection for right-censored outcomes

Given candidate predictors ψ̂k = ψk(· | Pn), the corresponding risk
difference for the quadratic loss simplifies to

dn(ψ̂k, ψ0) =
∫
L(o, ψ̂k | η0)− L(o, ψ0 | η0)dP0(o)

=
∫
L2(x, ψ̂k)− L2(x, ψ0)dFX,0(x)

=
∫

(ψk(w | Pn)− ψ0(w))2dFW,0(w).
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Example 3: Predictor selection for right-censored outcomes

E.g. 1. Predicting survival of cancer patients based on microarray
gene expression profile of cancer tissue.

E.g. 2. Predicting survival of AIDS patients from DNA sequence
of HIV virus.
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Example 3: Predictor selection for right-censored outcomes

Cross-validation for bin width selection in histogram regression on
right-censored outcomes.

• The full data structure is X = (Y,W ), where W ∼ U(0, 1) and
Y = log T = W 2 + ε, ε ∼ N(0, σ2), σ2 = 2, enforced compact
support in the interval [−10, 10].

• Censoring times C are generated from an Exponential(λ)
distribution.

• 50 replicate datasets were generated for sample sizes n =50,
100, 200, 400, 800, 1600.

• Kn = 100 different bin widths were considered. For
k = 1, . . . ,Kn, the unit interval is divided into k bins with
width 1/k each.
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Example 3: Predictor selection for right-censored outcomes

0.0 0.2 0.4 0.6 0.8 1.0
−

4
−

2
0

2
4

Data points

w

z

# of bins: 2

w

pr
ed

ic
tio

n
0.

0
0.

1
0.

2
0.

3
0.

4
0.

5

# of bins: 6

w

pr
ed

ic
tio

n
0.

0
0.

2
0.

4
0.

6
0.

8

# of bins: 14

w
pr

ed
ic

tio
n

0.
0

0.
5

1.
0

Figure 14: Histogram regression. Predictors are indexed by the num-
ber of bins and the prediction for a given bin is the mean outcome
for observations in that bin.
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Example 3: Predictor selection for right-censored outcomes

• For k-bin histogram regression and for a particular training
sample P 0

n,Sn
, let Bj(P 0

n,Sn
) denote the set of observations in

the jth bin, [(j − 1)/k, j/k), j = 1, . . . , k,

Bj(P 0
n,Sn

) =
{
i : Sn,i = 0,Wi ∈ [(j − 1)/k, j/k)

}
.

For w ∈ [(j − 1)/k, j/k), the predicted log survival time is

ψk(w | P 0
n,Sn

) =
1

|Bj(P 0
n,Sn

)|
∑

i∈Bj(P 0
n,Sn

)

(log Ti)∆i

Ḡ0
n,Sn

(Ti |Wi)
,

where Ḡ0
n,Sn

(· |W ) is the Kaplan-Meier estimator of Ḡ(· |W ).

• Bin widths were selected by ten-fold cross-validation
(p = 1/10).
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Example 3: Predictor selection for right-censored outcomes

Censoring proportion

0% 10% 20%

50 6.578537 7.133457 7.846112

100 1.100901 1.333004 1.974709

200 1.022957 1.199649 1.418739

n 400 1.013431 1.137665 1.255642

800 1.010221 1.119677 1.155544

1600 1.003344 1.071642 1.107322

Table 9: Ten-fold cross-validation. dn(ψ̂k̂,ψ0)

dn(ψ̂k̃n
,ψ0)

vs. n for different

censoring proportions (λ = 0.07 and 0.15 for 10% and 20% censoring,
respectively).
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MOTIVATION

1. Prediction of clinical outcomes based on epidemiological and
genomic data such as gene expression/ single nucleotide
polymorphism (SNP)/ comparative genomic hybridization
(CGH).

2. Prediction of gene-expression from regularitory-DNA-sequence.

3. And so on!

Interesting features: High dimensional covariates, censored
clinical outcomes such as survival.
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OVERVIEW

• The optimal predictor in terms of loss function.

• Selection among candidate data-based predictors (estimators):
Cross-validation selector, theory, take home lesson.

• Parametrizing predictors as linear combinations of basis
functions (i.e., choose a Sieve).

• Construction of a candidate data dependent predictor for
each subset of basis functions.

• Minimizing criteria (cross-validated risk/empirical risk) for
subset-specific predictor over all possible subsets of basis
functions: Deletion/Substitution/Addition algorithm.

• Generalizing to censored data.
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OPTIMAL PREDICTOR IN TERMS OF LOSS FUNCTION

Let O1 = (Y1,W1), . . . , On = (Yn,Wn) be n i.i.d. observations of
O = (Y,W ) ∼ P0, where Y denotes an outcome of interest and W
is a d-dimensional vector of covariates. Let M be a model for P0:
that is, it is given that P0 ∈M.
Predictor: A function W → ψ(W ) from W to an outcome.
Loss function: Let L(O,ψ) = (Y − ψ(W ))2 be the squared error
loss function for a candidate predictor ψ.
Risk of predictor: The risk of a predictor W → ψ(W ) equals the
expected loss (w.r.t. the true distribution P0).
Optimal predictor: ψ0(W ) = EP0(Y |W ) is the optimal
(minimal risk) predictor over a set Ψ (e.g., parameter space
implied by model M) of allowed predictors:

ψ0 = argminψ∈ΨE0L(O,ψ)

= argminψ∈Ψ

∫
(Y − ψ(W ))2dP0(Y,W ).
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Risk “distance” : For a given predictor W → ψ(W ), we have
that its risk minus the optimal risk equals the expected squared
deviation ψ(W )− ψ0(W ):

d(ψ,ψ0) ≡
∫
{L(O,ψ)− L(O,ψ0)} dP0(O)

=
∫

(ψ(W )− ψ0(W ))2dP0(W ).
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SELECTION

Let Pn be the empirical distribution of the observed sample
O1, . . . , On.
Estimator: An estimator of the optimal predictor ψ0(W ) is a
mapping (i.e., an algorithm) from Pn into a particular predictor in
Ψ. Notation: Pn → ψ(Pn) ∈ Ψ.
Candidate estimators: Let Pn → ψk(Pn) ∈ Ψ, k = 1, . . . ,K(n),
be a collection of estimators of ψ0 (i.e., algorithms which map data
into a predictor).
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THE ORACLE SELECTOR

The oracle selector k̃n chooses the estimator with minimal (true)
risk. Equivalently

k̃n = argmink

∫
(ψk(Pn)(W )− ψ0(W ))2dP0(W ).

Since risk depends on the true distribution P0 this selector is not
available in practice.
Asymptotic equivalence with oracle selector: Given the
K(n) candidate estimators, a selector k̂ = k̂(Pn) ∈ {1, . . . ,K(n)} is
asymptotically equivalent with the oracle selector if the risk of the
estimator chosen by the selector approaches (when sample size
converges to infinity) as fast to the optimal risk of ψ0 as the risk of
the estimator chosen by the oracle selector: that is,

d(ψk̂(Pn), ψ0)
d(ψk̃n

(Pn), ψ0)
→ 1 in probability.

Page 244



THE CROSS-VALIDATION SELECTOR

Empirical risk estimate: Given an estimator ψ(Pn), the
empirical risk estimate is simply the empirical mean of the squared
error loss L(O,ψ(Pn)) = (Y − ψ(Pn)(W ))2:

1
n

n∑
i=1

L(Oi, ψ(Pn)).

Cross-validated risk estimate: In this case, one applies the
estimator to a part of the sample (training sample) and one
computes the average loss of the obtained estimator over the
remaining sample (validation sample). One averages this risk
estimate over a particular number of splits of the sample.
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Formally, define a random vector Sn ∈ {0, 1}n for splitting the
sample into a validation and a training sample.

Sn,i =

 0 if i-th observation is in the training sample

1 if i-th observation is in the validation sample

Different choices of Sn cover all types of cross-validation schemes
including V− fold cross-validation, monte carlo cross validation,
and bootstrap cross-validation. For example, in 5-fold
cross-validation Sn has 5 possible outcomes.
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Let p = n1/n be the proportion constituting the validation sample.

Let P 0
n,Sn

, P 1
n,Sn

be the empirical distributions of the training and
validation sample, respectively.

The cross-validated risk estimate of a candidate estimator
Pn → ψk(Pn) is defined by:

ESn

1
np

∑
i:Sn(i)=1

(Yi − ψk(P 0
n,Sn

)(Wi))2.

Cross-validation selector: The cross-validation selector chooses
the estimator minimizing the cross-validated risk estimate of the
risk of ψk(Pn), k = 1, . . . ,K(n).
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EQUIVALENCE WITH ORACLE SELECTOR

If 1) the proportion p = p(n) constituting the validation sample
converges to zero with sample size n, and 2) the logarithm of the
number of estimators, K(n), divided by the validation sample
size, np, converges faster to zero than the risk distance of the oracle
choice estimator and ψ0, then the cross-validation selector k̂ is
asymptotically equivalent (and thus optimal) with the oracle
selector.
Sensitivity to proportion p: Simulations (and theoretical
argument) show that, in practice, the sensitivity of the performance
of the cross-validation selector to the choice of p is remarkably low:
e.g. 2-fold performs well!
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DESCRIBING/PARAMETRIZING PREDICTORS

We describe any of the allowed predictors in Ψ with linear
combinations W →

∑
j∈I βjΦj(W ) of basis functions W → Φj(W )

indexed by an index set I.
Tensor products of univariate basis functions: For example,
if we use a polynomial basis, then for each ~p = (p1, . . . , pd), we have
a basis function φ~p(X) = Xp1

1 · · ·Xpd

d .
Each index set I = {~p1, . . . , ~pk}, corresponds now with a linear
regression model in variables being tensor products of polynomial
powers.

Indicators of sets of a partition: Let W be the covariate space.
Given a region R in W, let ΦR(·) = I(· ∈ R) be the indicator of
this region. Each partition I = {R1, . . . , Rk} of W corresponds
with a linear regression model in variables being indicators of sets
Rj : thus, a histogram regression model.
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SUBSET SPECIFIC LEAST-SQUARES ESTIMATOR

For each index set I (indicating tensor products of univariate basis
functions, or indicators of sets corresponding with a partition), let

ΨI(Pn)

be the minimizer of residual sum of squared errors (i.e., empirical
mean of squared error loss function) over the linear regression
model {ψI,β : β} corresponding with the subset of basis functions
identified by I.
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ESTIMATING THE SUBSET OF BASIS FUNCTIONS

The optimal subset would be the minimizer over all subsets I of the
true risk (say) f0(I) of the corresponding estimator ψI(Pn). So we
need to estimate this true risk function.
Subset Estimator 1: Minimize the empirical risk estimate over
all subsets of basis functions of size k, but choose k by minimizing
the cross-validated risk estimate.
Subset Estimator 2: Minimize the cross-validated risk estimate
over all subsets of basis functions. That is, minimize

I → ESn

1
np

∑
i:Sn(i)=1

{Yi −ΨI(P 0
n,Sn

)(Wi)}2.

Below, we specify a DELETION/SUBSTITUTION/ADDITION
(D/S/A) algorithm for minimizing over I the empirical risk
estimate fRSS(I) or cross-validated risk estimate fCV.RSS(I) of
ψI(Pn).
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DELETION/SUBSTITUTION/ADDITION ALGORITHM

The D/S/A algorithm aims to minimize a function I → f(I) (e.g.,
fRSS , fCV.RSS) over subsets of basis functions, and is defined by
three set functions DEL(I0), SUB(I0), and ADD(I0), which maps
a current subset I0 into a collection of subsets of size | I0 | −1
(deletion moves), | I0 | (substitution moves), and | I0 | +1 (addition
moves), respectively.
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ALGORITHM

Initiate Algorithm
I0 = ∅,
f2 (I0) = ESn ∫ L(Oi,ψI(o|P0

n, Sn))dP1
n, Sn(O){ }
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ALGORITHM

Initiate Algorithm

Addition
f2 (I+) =  argmin f2 (I)

I ∈Add(I0)

I0 = ∅,
f2 (I0) = ESn ∫ L(Oi,ψI(o|P0

n, Sn))dP1
n, Sn(O){ }
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ALGORITHM

Initiate Algorithm

Addition
f2 (I+) =  argmin f2 (I)

I ∈Add(I0)

f2 (I+) < f2 (I0)
I0 = I+

I0 = ∅,
f2 (I0) = ESn ∫ L(Oi,ψI(o|P0

n, Sn))dP1
n, Sn(O){ }
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ALGORITHM

Initiate Algorithm

Deletion
f2 (I-) =  argmin f2 (I)

I ∈Del(I0)

f2 (I-) ≥ f2 (I0)

Addition
f2 (I+) =  argmin f2 (I)

I ∈Add(I0)

f2 (I+) < f2 (I0)
I0 = I+

f2 (I-) < f2 (I0)
I0 = I-

I0 = ∅,
f2 (I0) = ESn ∫ L(Oi,ψI(o|P0

n, Sn))dP1
n, Sn(O){ }
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ALGORITHM

Initiate Algorithm

Deletion
f2 (I-) =  argmin f2 (I)

I ∈Del(I0)

f2 (I-) ≥ f2 (I0)
Substitution
f2 (I=) =  argmin f2 (I)

I ∈Sub(I0)

Addition
f2 (I+) =  argmin f2 (I)

I ∈Add(I0)

f2 (I+) < f2 (I0)
I0 = I+

f2 (I-) < f2 (I0)
I0 = I-

I0 = ∅,
f2 (I0) = ESn ∫ L(Oi,ψI(o|P0

n, Sn))dP1
n, Sn(O){ }
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ALGORITHM

Initiate Algorithm

Deletion
f2 (I-) =  argmin f2 (I)

I ∈Del(I0)

f2 (I-) ≥ f2 (I0)
Substitution
f2 (I=) =  argmin f2 (I)

I ∈Sub(I0)

Addition
f2 (I+) =  argmin f2 (I)

I ∈Add(I0)

f2 (I=) ≥ f2 (I0)
f2 (I+) < f2 (I0)

I0 = I+

f2 (I=) < f2 (I0)
I0 = I=

f2 (I-) < f2 (I0)
I0 = I-

I0 = ∅,
f2 (I0) = ESn ∫ L(Oi,ψI(o|P0

n, Sn))dP1
n, Sn(O){ }
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ALGORITHM

Initiate Algorithm

Deletion
f2 (I-) =  argmin f2 (I)

I ∈Del(I0)

f2 (I-) ≥ f2 (I0)
Substitution
f2 (I=) =  argmin f2 (I)

I ∈Sub(I0)

Addition
f2 (I+) =  argmin f2 (I)

I ∈Add(I0)

f2 (I=) ≥ f2 (I0)

Stop Algorithm
f2 (I+) ≥ f2 (I0)

f2 (I+) < f2 (I0)
I0 = I+

f2 (I=) < f2 (I0)
I0 = I=

f2 (I-) < f2 (I0)
I0 = I-

I0 = ∅,
f2 (I0) = ESn ∫ L(Oi,ψI(o|P0

n, Sn))dP1
n, Sn(O){ }
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PROPOSAL FOR TENSOR PRODUCT MOVES

Deletion moves. DEL(I0) maps into the k subsets of size k − 1
corresponding with deleting one of the k basis functions in I0.

Substitution moves. Given a basis function indexed by ~p ∈ I0,
replace it by the basis function indexed by ~p± ~ej , where ~ej
denotes the j-th unit vector, j = 1, . . . , d. Apply this to each
basis function in I0, which gives a total of 2d× k substitution
moves.
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Illustration:

~p→



(p1 + 1, p2, p3, . . . , pd)

(p1, p2 + 1, p3, . . . , pd)

...

(p1, p2, p3, . . . , pd + 1)

(p1 − 1, p2, p3, . . . , pd)

(p1, p2 − 1, p3, . . . , pd)

...

(p1, p2, p3, . . . , pd − 1)

for each ~p ∈ I0.

Addition moves. Given the current index set I0, the addition
moves are obtained by adding to I0 the basis functions indexed
by one of the unit vectors or by one of the basisi functions in
SUB(I0). This gives a total of 3d addition moves.
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Illustration:

~pk+1 =



(1, 0, . . . , 0)

...

(0, . . . , 0, 1)

(p1 + 1, p2, p3, . . . , pd)

...

(p1, p2, p3, . . . , pd + 1)

(p1 − 1, p2, p3, . . . , pd)

...

(p1, p2, p3, . . . , pd − 1)

By replacing the jumps of size 1 in the definition of SUB(I0) and
ADD(I0) by jumps of size in {1, . . . , S}, this algorithm can be
made increasingly agressive.
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SIMPLE EXAMPLE FOR POLYNOMIAL BASIS

Let d = 4 and Y = X1X2X3 +X2X
5
4 + ε. Then k = 2,

~p1 = (1, 1, 1, 0), ~p2 = (0, 1, 0, 5).

A deletion move simply means removing one of the terms of the
current model and fitting a model of size k − 1.

The substitution moves involve replacing the sth term for
s = 1, . . . , k with a new term, keeping the size of the model fixed at
k.
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The possible substitution moves are given by:

Y =



X2
1X2X3 +X2X

5
4 + ε ~p1 = (2, 1, 1, 0)

X1X
2
2X3 +X2X

5
4 + ε ~p1 = (1, 2, 1, 0)

X1X2X
2
3 +X2X

5
4 + ε ~p1 = (1, 1, 2, 0)

X1X2X3X4 +X2X
5
4 + ε ~p1 = (1, 1, 1, 1)

X2X3 +X2X
5
4 + ε ~p1 = (0, 1, 1, 0)

X1X3 +X2X
5
4 + ε ~p1 = (1, 0, 1, 0)

X1X2 +X2X
5
4 + ε ~p1 = (1, 1, 0, 0)

X1X2X
5
4 +X1X2X3 + ε ~p2 = (1, 1, 0, 5)

X2
2X

5
4 +X1X2X3 + ε ~p2 = (0, 2, 0, 5)

X2X3X
5
4 +X1X2X3 + ε ~p2 = (0, 1, 1, 5)

X2X
6
4 +X1X2X3 + ε ~p2 = (0, 1, 0, 6)

X5
4 +X1X2X3 + ε ~p2 = (0, 0, 0, 5)

X2X
4
4 +X1X2X3 + ε ~p2 = (0, 1, 0, 4)
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If none improve RSS, then find the best fit among the following
addition moves:

Y =



X1 + X1X2X3 + X2X5
4 + ε ~p3 = (1, 0, 0, 0)

X2 + X1X2X3 + X2X5
4 + ε ~p3 = (0, 1, 0, 0)

X3 + X1X2X3 + X2X5
4 + ε ~p3 = (0, 0, 1, 0)

X4 + X1X2X3 + X2X5
4 + ε ~p3 = (0, 0, 0, 1)

X2
1X2X3 + X1X2X3 + X2X5

4 + ε ~p3 = (2, 1, 1, 0)

X1X2
2X3 + X1X2X3 + X2X5

4 + ε ~p3 = (1, 2, 1, 0)

X1X2X2
3 + X1X2X3 + X2X5

4 + ε ~p3 = (1, 1, 2, 0)

X1X2X3X4 + X1X2X3 + X2X5
4 + ε ~p3 = (1, 1, 1, 1)

X2X3 + X1X2X3 + X2X5
4 + ε ~p3 = (0, 1, 1, 0)

X1X3 + X1X2X3 + X2X5
4 + ε ~p3 = (1, 0, 1, 0)

X1X2 + X1X2X3 + X2X5
4 + ε ~p3 = (1, 1, 0, 0)

X1X2X5
4 + X1X2X3 + X2X5

4 + ε ~p3 = (1, 1, 0, 5)

X2
2X5

4 + X1X2X3 + X2X5
4 + ε ~p3 = (0, 2, 0, 5)

X2X3X5
4 + X1X2X3 + X2X5

4 + ε ~p3 = (0, 1, 1, 5)

X2X6
4 + X1X2X3 + X2X5

4 + ε ~p3 = (0, 1, 0, 6)

X5
4 + X1X2X3 + X2X5

4 + ε ~p3 = (0, 0, 0, 5)

X2X4
4 + X1X2X3 + X2X5

4 + ε ~p3 = (0, 1, 0, 4)
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DOES THE DSA ALGORITHM DO THE JOB?

Is the algorithm capable to find the global minimum (i.e., the
optimal predictor W → ψ0(W ) = E0(Y |W )) when n is large
enough?

We generated n = 1000 observations from the following three true
regression models with zero error, d = 100, Xj ∼ U(0, 1), and we
check if the D/S/A algorithm finds the truth.
E1[Y |X] = X1X12X

2
13X22X24X54X79X83X95 +X15X18X37X42X68 +

X6X22X
3
33X40X58X75X82X87 +X15X31

E2[Y |X] =

X7X25X31X59X63X68X70X83X88X98 +X0X32X47X54X66X72X73X77 +

X82 +X7X49X55X73X80 +X33X40 +X18X21X40X56X59X71X91 +

X9X13X18X20X41X53X69X95 +X3X38X78X96 +

X0X20X64X88X91X96 +X2X6X16X37X45X46X61X68X91X95
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E3[Y |X] = X0X
2
1X

4
4X

10
99 +X45 +

X2
2X8X14X20X22X29X36X39X41X44X48X56X62X63X65X87 +

X27X48X63X77X78X93X94 +X71 +

X12X18X22X44X50X55X57X64X
2
73X80X83X93X94X96 +X69X91 +

X2X4X22X23X28X36X53X79X88 +X48X70X82X97 +

X3X24X29X54X64X80
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Simulation Results for Three Models

Zero error

E[Y |X] X n d p RSS

E1[Y |X] U(0, 1) 1000 100 1.0 0.000000

E2[Y |X] U(0, 1) 1000 100 1.0 0.000000

E3[Y |X] U(0, 1) 1000 100 0.8 0.000001
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SIMULATIONS

Consider the nonparametric polynomial regression (NPR) model
for E[Y |X], defined by the collection of sums of tensor-product
polynomial basis functions:

Y =
size∑
s=1

βs

d∏
j=1

X
ps(j)
j + ε, E(ε| ~X) = 0.

To assess the DSA algorithm’s ability to minimize residual sum of
squares over this NPR-model for large sample size, we randomly
generated true regressions in this NPR-model and set ε = 0, and
verified if the algorithm found the truth.
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The true regression model is randomly generated as follows:

size ∼ U{1, . . . , 5}
d∑
j=1

ps(j) ∼ U{1, . . . , 5}

~ps ∼ Multinomial(
∑d
j=1 ps(j), d, (

1
d , . . . ,

1
d ))

After randomly choosing size and ~ps, each formed
∏
j X

ps(j)
j

tensor-product was ensured to be unique. The sum of these
randomly generated unique terms and ε yielded the true response
variable Y .
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REPORTED QUANTATIES

The following quantities are represented in the tables summarizing
simulation results:

• p: proportion of correctly fitted terms given the true model

• p̄: average proportion of correctly fitted terms across the
number of repetitions

• RSS: residual sum of squares of fitted model

• RSS: average RSS across the number of repetitions
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Results for Randomly Generated Polynomial Regressions

Zero error

X n d nsims p̄ RSS

U(0, 1) 1000 5 1000 1.000 0.0000

U(0, 1) 1000 100 500 1.000 0.0000

Bernoulli(p) 1000 5 100 0.996 0.0000

Bernoulli(p) 2000 10 100 0.921 0.0000

Bernoulli(p) 1000 25 100 0.884 0.0000

Bernoulli(0.6) 500 5 100 1.000 0.0000

Bernoulli(0.6) 500 25 100 1.000 0.0000
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Comparing ε = 0 to ε ∼ N (0, 1)

The following two models were generated, first with ε = 0 and then
with ε ∼ N (0, 1).

E3[Y |X] = X0X
2
1X

2
2 +X0X1X

2
2X3 +X3

2 +X4
4

E4[Y |X] = X7X25X31X59X63X68X70X83X88X98 +
X0X32X47X54X66X72X73X77 +X82 +X7X49X55X73X80 +
X33X40 +X18X21X40X56X59X71X91 +
X9X13X18X20X41X53X69X95 +X3X38X78X96 +
X0X20X64X88X91X96 +X2X6X16X37X45X46X61X68X91X95
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The following quantities are used in the next table:

• RSSn: RSS/(n− k) represents the estimate of the variance of
the error where k is the number of independent variables in
fitted model

• RSS0: the RSS of the true model

• *: indicates the model for which ε ∼ N (0, 1)
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Comparing ε = 0 to ε ∼ N (0, 1)*

E[Y |X] X n d p RSSn RSS0

E3[Y |X] N (5, 0.25) 1000 5 1.0 0.0000 0.0000

E3[Y |X]∗ N (5, 0.25) 10000 5 1.0 0.9886 0.9890

E4[Y |X] N (5, 0.25) 1000 100 1.0 0.0000 0.0000

E4[Y |X]∗ N (5, 0.25) 10000 100 1.0 0.9955 0.9961
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DSA ALGORITHM VERSUS stepAIC() R-FUNCTION

The DSA algorithm creates variables data-adaptively and therefore
does not require enumeration of all potential variables.
The stepAIC() for linear regression does require enumeration of all
variables. To compare the two black-box algorithms (data →
predictor), we enumerated all main terms and two way interactions.

The following three true regression models were generated where
Xj ∼ U(1, 10), j = 1, . . . , d, and ε ∼ N (0, 1).

E1[Y |X] = X1 +X2
2

E2[Y |X] = X1X3

E3[Y |X] = X1X3 +X2
5 +X7X10
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The following quantities are represented in the table:

• k̂: size of the final fitted model for each method

• RISK: estimate of the true risk, based on 20,000 independent
observations, of the final model given by both methods
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COMPARING STEP-AIC and CV-DSA

E[Y |X] n d k̂AIC k̂CV STEP-AIC DSA-CV

E1[Y |X] 5000 3 2 2 0.9963 0.9963

E2[Y |X] 5000 10 19 1 0.9995 0.9932

E3[Y |X] 5000 10 22 3 1.0174 1.0106
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PROPOSAL FOR PARTITION-MOVES

Given a partition I0 = {R1, . . . , Rk} of the covariate space W, we
propose the following moves.

deletion moves: Replace two indicators IRi
, IRj

of sets Ri, Rj by
the indicator IRi∪Rj

of the union Ri ∪Rj .

substitution moves: See below.

addition moves: Replace an indicator IRi of a set Ri by two
indicators of Ri ∩ {Wl < c} and Ri ∩ {Wl > c}.
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POSSIBLE SUBSTITUTIONS

r1

a b

r2

c d

a b c d1.

a b d c2.

c d ba3.

c d ab4.

a dbc5.

a d cb6.

rs1 rs2
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x1

x2

B
eta
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INDICATOR OF SET REPRESENTATION

(a111,b111]

and

(a211,b211]

and

. . .

. . .

. . .

and

(ap11,bp11]

or

(a121,b121]

and

(a221,b221]

and

. . .

. . .

. . .

and

(ap21,bp21]

. . .or or

(a11m,b11m]

and

(a21m,b21m]

and

. . .

. . .

. . .

and

(ap1m,bp1m]
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DSA vs. RECURSIVE PARTITIONING
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Table 10: 100 repetitions of full data simulated from y = x2 + er,

where x ∼ N(0, 1) and er ∼ N(0, .25). Conditional risk of our method

(ours), rpart (R-implementation of CART) with 1-SE (rpart) and rpart

by minimizing CV-error (rpart0 ).

n Method Mean Std.Dev. Avg. size Ratio

ours 0.26125 0.09384 7.44 1

250 rpart 0.45305 0.14195 5.69 .577

rpart0 0.35172 0.09927 14.45 .743

ours 0.18935 0.07318 9.95 1

500 rpart 0.27216 0.08574 9.55 .696

rpart0 0.22187 0.07544 21.26 .853

ours 0.14080 0.04016 12.06 1

1000 rpart 0.18489 0.05206 13.02 .762

rpart0 0.15403 0.04916 28.44 .914
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PREDICTING GENE EXPRESSION
FROM SEQUENCE

Motif A Motif B Motif C

... Gene 

Expression
ACGTACACGTAAACGTTACTGTAATTTACGTGGACAAA......

Goal: To identify binding sites (regulatory motifs).

n

Data:

• Gene Expression Data: P ×N matrix with entries
Yij , i = 1, · · · , P, j = 1, · · · , N . Yij is the logarithm of the
relative gene expression for gene i in experiment j.

• Upstream Control Region (UCR): Roughly 600 to 1000 base
pairs of the gene start site.
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WHAT ARE BINDING SITES AND
WHY ARE THEY IMPORTANT?

DNA binding proteins (transcription factors) bind to DNA in a
sequence specific manner. These short DNA sequences (5-25 base
pairs) are called binding sites or regulatory motifs.

All cells from bacteria to mammals respond to various treatments
by activating or repressing the expression of particular genes.

Gene expression is regulated by transcription factors binding
selectively to their specific binding sites.
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GAL4 BINDING

From http://www.cryst.bbk.ac.uk/PPS2/.
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CELL CYLE IN YEAST

We used the DSA algorithm with polynomial basis to regress the
512 = 1024/2 indicators of “Presence of length 5 motiff” on gene
expression at each time-point in the 16 time point cell cycle
experiment in yeast (Cho et al., 1998).

In the DSA algorithm we use 2-fold cross-validation, maximal size
of model K = 5, and Subset Estimator 1 for the subset I of basis
functions.
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T=30 min

k̂CV Run time θ̂full θ̂main θ̂full/θ̂main

3 6.2 hrs 1176.144 1176.746 0.999

Selected pentamers
∑n

i=1 Xi, Xi = {0, 1}

• ACGCG [MCB] 774

• 10-way interaction: 60

AAATC 2116

AACTA 2023

AATAT 2492

ACAAA 2410

ACGCG [MCB] 774

AGCCG 937

ATGAA 2207

CAAGA 2051

CCACC 960

GAAAC 1967

• 10-way interaction: 26

AACTT 2150

ACGCG [MCB] 774

AGATA 2127

AGCAA 2009

ATAAC 2027

ATATG 2122

CTGCC 1078

CTGTC 1188

GGCCC 615

TGACA 1603
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T=50 min

k̂CV Run time θ̂full θ̂main θ̂full/θ̂main

1 10.9 hrs 1149.242 1138.828* 1.009

Selected pentamers
∑n

i=1 Xi, Xi = {0, 1}

• 15-way interaction: 62

AAGAG 2120

AAGCA 1994

AAGGA 2118

AATCA 2038

ACAAA 2410

AGGAA * 2146

AGGCC 798

AGTGG 1278

ATTCA 2022

ATTTA 2398

CAACA 1852

GATTA 1811

GCTTA 1522

TACTA 2002

TGGAA 1915
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T=70 min

k̂CV Run time θ̂full θ̂main θ̂full/θ̂main

4 8.4 hrs 1296.356 1295.034* 1.001

Selected pentamers
∑n

i=1 Xi, Xi = {0, 1}

• 2-way interaction: 2590

AAAAG 2676

GAAAA [ECB] 2676

• 4-way interaction: 676

AAAAT 2679

AAACA *[STE 12] 2406

AAATA 2649

ACGCG [MCB] 774

• 11-way interaction: 103

AAAAG 2676

AAACA [STE 12] 2406

AATTG 2059

ACATG 1300

ATAAA 2609

ATACG 1480

ATATA 2434

CGCGA 743

GAATA 2213

GTTCA 1545

TCAAA 2326
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T=70 min

k̂CV Run time θ̂full θ̂main θ̂full/θ̂main

4 8.4 hrs 1296.356 1295.034* 1.001

Selected pentamers
∑n

i=1 Xi, Xi = {0, 1}

• 15-way interaction: 49

AAAAT 2679

ACGCG [MCB] 774

AAACA [STE 12] 2406

AAATA 2649

AACAC 1670

AACAG 1895

AATCC 1370

AGGTG 1290

CAAAA 2538

CTTCA 1912

GATAA 2069

GGAAA 2312

GGGAA 1631

TATCA 2120

TGTAA 2102
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T=110 min

k̂CV Run time θ̂full θ̂main θ̂full/θ̂main

1 11.8 hrs 1245.625 1232.567* 1.011

Selected pentamers
∑n

i=1 Xi, Xi = {0, 1}

• 9-way interaction: 178

AAAAT 2679

AAACA [STE 12] 2406

AAAGT 2349

AATAG 2247

ACGCG *[MCB] 774

AGAAG 2150

ATAAG 2095

GACGC 855

TCTCA 1695
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PREDICTION OF SURVIVAL with CV-DSA

Let T be a log-survival time, and suppose that our goal is to
estimate the optimal predictor ψ0(W ) = E0(T |W ). However, due
to right-censoring by a variable C, we only observe
Oi = (T̃i ≡ min(Ti, Ci),∆i = I(Ti ≤ Ci),Wi). Let G(· | T,W ) be
the conditional distribution of censoring C, given (T,W ), and we
assume that censoring is independent of survival time, given W :
i.e., G(· | T,W ) = G(· |W ).

The CV-DSA algorithm above for estimating the optimal predictor
ψ0(W ) based on the full (uncensored) data (Ti,Wi), i = 1, . . . , n, is
100% driven by the squared error loss function L(T,W,ψ). We can
replace in the CV-DSA the squared error loss function L(T,W,ψ)
by a function of the observed data O with the same expectation.
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The Inverse Probability of Censoring Weighted (IPCW)
Squared Error Loss Function

L(O,ψ | G) ≡ L(T,W,ψ)
∆

PG(∆ = 1 |W )
= (T − ψ(W ))2

∆
Ḡ(T |W )

.

For the optimal (that is, minimal variance, and maximally robust)
double robust IPCW loss function, we refer to van der Laan,
Robins (2002).

Remark Given an estimator G(Pn) (e.g., Kaplan-Meier, or
Cox-proportional hazards) of the censoring distribution G, the
cross-validation selector is now given by:

k̂ = argmink
n∑
i=1

I(Sn(i) = 1)(Ti−ψk(Wi | P 0
n,Sn

))2
∆i

Ḡ(P 0
n,Sn

)(Ti |Wi)
.
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CONCLUDING REMARKS

• Cross-validated DSA algorithms provide black-box algorithms
for estimating parameters which minimize the expectation of a
given loss function (e.g., regression, conditional density,
conditional survival function).

• Simulations show that the DSA-algorithm is asymptotically
surprisingly capable of truly minimizing the
cross-validated/empirical risk function over all subsets of basis
functions.

• In complex (i.e., genomic) studies we should let cross-validation
make the choices: e.g, if we choose the parametrization/basis
with cross-validation, then the estimator becomes adaptive to
the truth.

• Any such algorithm is immediately generalizable to censored
data by replacing the full-data loss function by the (double
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robust) IPCW loss function.
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SIMULATIONS

Consider the nonparametric polynomial regression (NPR) model
for E[Y |X], defined by the collection of sums of tensor-product
polynomial basis functions:

Y =
size∑
s=1

βs

d∏
j=1

X
ps(j)
j + ε, E(ε| ~X) = 0.

To assess the DSA algorithm’s ability to minimize residual sum of
squares over this NPR-model, we randomly generated true
regressions in this NPR-model and set ε = 0, and verified if the
algorithm found the truth.

Page 299



The true regression model is randomly generated as follows:

size ∼ U{1, . . . , 5}
d∑
j=1

ps(j) ∼ U{1, . . . , 5}

~ps ∼ Multinomial(
∑d
j=1 ps(j), d, (

1
d , . . . ,

1
d ))

After randomly choosing size and ~ps, each formed
∏
j X

ps(j)
j

tensor-product was ensured to be unique. The sum of these
randomly generated unique terms and ε yielded the true response
variable Y .
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REPORTED QUANTATIES

The following quantities are represented in the tables summarizing
simulation results:

• p: proportion of correctly fitted terms given the true model

• p̄: average proportion of correctly fitted terms across the
number of repetitions

• RSS: residual sum of squares of fitted model

• RSS: average RSS across the number of repetitions
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Simulation Results for Randomly Generated Polynomials

Zero error

X n d nsims p̄ RSS

U(0, 1) 1000 5 1000 1.000 0.0000

U(0, 1) 1000 100 500 1.000 0.0000

Bernoulli(p) 1000 5 100 0.996 0.0000

Bernoulli(p) 2000 10 100 0.921 0.0000

Bernoulli(p) 1000 25 100 0.884 0.0000

Bernoulli(0.6) 500 5 100 1.000 0.0000

Bernoulli(0.6) 500 25 100 1.000 0.0000
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Simulations: Increase complexity of true regression

In the previous simulations, size ∼ U{1, . . . , 5}, but now we
increase both the size and the allowed sum of the powers of the
polynomials within a tensor product as follows:

size ∼ U{1, . . . , 10},
d∑
j=1

ps(j) ∼ U{1, . . . , 20}, with d = 100. In

these simulations, RSS ≤ 0.000001 was used as a stopping
criterion.
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The following three true regression models were generated:
E1[Y |X] = X1X12X

2
13X22X24X54X79X83X95 +X15X18X37X42X68 +

X6X22X
3
33X40X58X75X82X87 +X15X31

E2[Y |X] =

X7X25X31X59X63X68X70X83X88X98 +X0X32X47X54X66X72X73X77 +

X82 +X7X49X55X73X80 +X33X40 +X18X21X40X56X59X71X91 +

X9X13X18X20X41X53X69X95 +X3X38X78X96 +

X0X20X64X88X91X96 +X2X6X16X37X45X46X61X68X91X95
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Simulation Results for Two Models

Zero error

E[Y |X] X n d p RSS

E1[Y |X] U(0, 1) 1000 100 1.0 0.000000

E2[Y |X] U(0, 1) 1000 100 1.0 0.000000
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Comparing ε = 0 to ε ∼ N (0, 1)

The following two models were generated, first with ε = 0 and then
with ε ∼ N (0, 1).

E3[Y |X] = X0X
2
1X

2
2 +X0X1X

2
2X3 +X3

2 +X4
4

E4[Y |X] = X7X25X31X59X63X68X70X83X88X98 +
X0X32X47X54X66X72X73X77 +X82 +X7X49X55X73X80 +
X33X40 +X18X21X40X56X59X71X91 +
X9X13X18X20X41X53X69X95 +X3X38X78X96 +
X0X20X64X88X91X96 +X2X6X16X37X45X46X61X68X91X95
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The following quantities are used in the next table:

• RSSn: RSS/(n− k) represents the estimate of the variance of
the error where k is the number of independent variables in
fitted model

• RSS0: the RSS of the true model

• *: indicates the model for which ε ∼ N (0, 1)
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Comparing ε = 0 to ε ∼ N (0, 1)*

E[Y |X] X n d p RSSn RSS0

E3[Y |X] N (5, 0.25) 1000 5 1.0 0.0000 0.0000

E3[Y |X]∗ N (5, 0.25) 10000 5 1.0 0.9886 0.9890

E4[Y |X] N (5, 0.25) 1000 100 1.0 0.0000 0.0000

E4[Y |X]∗ N (5, 0.25) 10000 100 1.0 0.9955 0.9961
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DSA ALGORITHM VERSUS stepAIC() R-FUNCTION

The DSA algorithm creates variables and therefore does not require
enumeration of all potential variables.
The stepAIC() for linear regression does require enumeration of all
variables. To compare the two black-box algorithms (data → model
fit), we enumerated all main terms and two way interactions.

The following three true regression models were generated where
Xj ∼ U(1, 10), j = 1, . . . , d, and ε ∼ N (0, 1).

E1[Y |X] = X1 +X2
2

E2[Y |X] = X1X3

E3[Y |X] = X1X3 +X2
5 +X7X10

Page 309



The following quantities are represented in the table:

• k̂: size of the final fitted model for each method

• θ̂opt: estimate of the true risk, based on 20,000 independent
observations, of the final model given by both methods
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Comparing stepAIC to Cross-Validated Del/Sub/Add

E[Y |X] n d k̂R k̂CV θ̂opt,R θ̂opt,CV

E1[Y |X] 5000 3 2 2 0.9963 0.9973

E2[Y |X] 5000 10 19 1 0.9995 0.9932

E3[Y |X] 5000 10 22 3 1.0174 1.0106
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SELECTION IN REGRESSION

Let O1 = (Y1,W1), . . . , On = (Yn,Wn) be n i.i.d. observations of
O = (Y,W ) ∼ P0, where Y denotes an outcome of interest and W
is a d-dimensional vector of covariates. Let M be a model for P0.
Let ψ0(w) = EP0(Y |W ) be the parameter (function) of interest,
and let Ψ = {EP (Y |W ) : P ∈M} be the parameter space. Let
L(O,ψ) be the squared error loss function for a candidate ψ whose
expectation is minimized by ψ0:

ψ0 = argminψ∈ΨE0L(O,ψ | η0).

Let Pn be the empirical distribution of O1, . . . , On. Let
ψ̂k(·) = ψk(· | Pn) ∈ Ψ, k = 1, . . . ,K(n), be a collection of
estimators (i.e., algorithms one can apply to data) of ψ0(·).
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The Selection Problem: Choose a data adaptive k̂ = k̂(Pn) so
that

dn(ψ̂k̂, ψ0) ≡
∫ {

L(O,ψk̂(· | Pn))− L(O,ψ0)
}
dP0(O)

=
∫

(ψk̂(W | Pn)− ψ0(W ))2dP0(W )

→ 0, at asymptotically optimal speed.

THE OPTIMAL BENCHMARK SELECTOR
Let

k̃n ≡ argminkdn(ψ̂k, ψ0)

= argmink

∫
L(o, ψk(· | Pn))dP0(o).

This optimal benchmark selector (for each given data set) depends
on the unknown data generating distribution P0.
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Asymptotic equivalence with benchmark selector: Given the K(n)
candidate estimators, a selector k̂ = k̂(Pn) is asymptotically
equivalent with the optimal benchmark if

dn(ψ̂k̂, ψ0)

dn(ψ̂k̃n
, ψ0)

→ 1 in probability.

In particular, then it is asymptotically optimal.
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THE CROSS-VALIDATION SELECTOR

Define random vector Sn ∈ {0, 1}n for splitting the sample into a
validation and a training sample.

Sn,i =

 0 if i-th observation is in the training sample

1 if i-th observation is in the validation sample

Different choices of Sn cover all types of cross-validation including
V− fold cross-validation, monte carlo cross validation (bootstrap
cross-validation): e.g. 5-fold cross-validation: Sn has 5 realizations.
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Let p = n1/n be the proportion constituting the validation sample.

Let P 0
n,Sn

, P 1
n,Sn

be the empirical distributions of the training and
validation sample, respectively.

The selector is defined by:

k̂ ≡ argminkESn

∫
L(o, ψk(· | P 0

n,Sn
))dP 1

n,Sn
(o)

= argminkESn

∑
i:Sn(i)=1

(Yi − ψk(Wi | P 0
n,Sn

))2.
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FINITE SAMPLE RESULT

Define the distance function for estimators based on training
samples of size n(1− p):

dn(1−p)(ψ̂k, ψ0) = ESn

∫ {
L(o, ψk(· | P 0

n,Sn
))− L(o, ψ0)

}
dP0(o)

= ESn

∫ (
ψk(W | P 0

n,Sn
)− ψ0(W )

)2
dP0(W ).

k̂ aims to minimize k → dn(1−p)(ψ̂k, ψ0). Denote the minimizer, i.e.
the optimal comparable benchmark selector for n(1− p)
observations, with:

k̃n(1−p) = argminkdn(1−p)(ψ̂k, ψ0).
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Suppose that the loss function L(O,ψ) is uniformly bounded by a
universal M1, and

VAR0 {L(O,ψ)− L(O,ψ0)} ≤M2E0 {L(O,ψ)− L(O,ψ0)} .

For any δ > 0, we have for a specified constant
C(M1,M2, δ) = 2(1 + δ)2(M1/3 +M2/δ)

Edn(1−p)(ψ̂(k̂), ψ0) ≤ (1 + δ)Edn(1−p)(ψ̂(k̃n(1−p)), ψ0)

+
C(M1,M2, δ) logK(n)

np
.
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COROLLARY: ASYMPTOTIC OPTIMALITY

If p = p(n) → 0 slowly enough with sample size, so that

log(K(n))
np(n)

/
Edn(ψ̂(k̃n), ψ0) → 0,

then
Edn(ψ̂(k̂), ψ0)

Edn(ψ̂(k̃n), ψ0)
→ 1.

That is, the data adaptive selector k̂ is asymptotically equivalent
(and thus optimal) with the optimal benchmark selector.
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THE ADAPTIVE ε-NET ESTIMATOR

SUB-PARAMETER SPACES Let Ψs ⊂ Ψ be sub-parameter
spaces indexed by s ∈ {1, . . . ,K1(n)}. Let Ψ1 = Ψ.

CONSTRUCT ε-NETS: For each subspace Ψs, for a given
ε > 0, let {

ψε,sj , j = 1, . . . , Ns(ε)
}
⊂ Ψs

be an ε-net of Ψs. Here Ns(ε) can be chosen equal to the
covering number of (Ψs, ‖ · ‖Ψ).

MINIMIZE EMPIRICAL RISKS Let

ψε,s(· | Pn) ≡ argmin{ψε,s
j :j}

n∑
i=1

(Yi − ψε,sj (Wi))2.
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SELECT ε, s: Let (ε̂, ŝ) be the (ε, s) minimizing cross-validated
empirical risk over a set of K(n)-values:

(ε̂, ŝ) ≡ argminε,sESn

∫
L(Y, ψε,s(W | P 0

n,Sn
))dP 1

n,Sn
(Y,W ).

The adaptive ε-net estimator is given by:

ψ(· | Pn) = ψε̂,ŝ(· | Pn).
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FINITE SAMPLE RESULT FOR ε-NET ESTIMATOR

Let

B0(ε, s) = min
j∈{1,...,Ns(ε)}

∫
L(O,ψε,sj )− L(O,ψ0)dP0(O)

= min
j

∫ (
ψεj(W )− ψ0(W )

)2
dP0(W ).

We have for any δ > 0

Edn(1−p)(ψ(· | Pn), ψ0) ≤

(1 + 2δ)min
ε,s

{
(1 + 2δ)B0(ε, s) + 2C(M1,M2, δ)

1 + log(Ns(ε))
n(1− p)

}
+2C(M1,M2, δ)

1 + log(K(n))
np

.
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Adaptivity: This finite sample inequality in terms of
approximation errors of the ε-nets and the covering numbers Ns(ε)
implies that the estimator is adaptive, that is, it achieves the
optimal rate of convergence for the smallest subspace still
containing the true ψ0.

Page 324



LARS/LASSSO VERSUS Epsilon-NET ESTIMATOR:
SIMULATION

We simulate data sets from a linear regression Y ∼ βX +N(0, σ2)
with X(j) ∼ U(0, 1), j = 1, .., 10, σ2 = 2, and uniformly distributed
regression coefficients β. We generated 2 simulated data sets of
various sample sizes, and compared the ε-net linear regression
estimator of β with the Least-Angle-Linear Regression estimator,
(lars) based on residual sum of squares on an independent sample
of 10,000 observations. “Lars” which has similar performance as
the L1-penalized regression estimator (Lasso).
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Sample size eps-net sd.eps-net lars sd.lars

20 77035.2 33114 183255.2 141810.6

50 52000 7143.2 81550.9 39228.6

100 45133.5 3447.5 60348.8 20702

200 42145.3 912.3 46798.5 7036.4

500 40886.5 586.3 43790.7 2394.7

1000 40738.6 471.8 43233.9 2702.7

2000 40348.2 400.6 40977.5 1095.3

Table 11: Sigma= 2
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Sample size eps-net sd.eps-net lars sd.lars

20 73228 17601.2 731493.2 995771.5

50 51217.6 5992.5 76624.4 38065.6

100 45166.5 3690.1 55813.6 11746.9

200 42189.6 1754.1 51473.8 15664.4

500 40719.4 640.4 44636.3 6696.1

1000 40090.4 691 40724 943.8

2000 39987.2 573.7 40409.8 706.6

Table 12: Sigma= 2
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CLUSTERING

Consider a collection of n p-dimensional vectors. This can be
represented as a p× n-matrix.

As statisticians, we like to think as these n vectors as a random
sample consisting of n independently and identically distributed
observations of a random vector. For example, this random vector
might represent the gene expression pro-
file of a randomly drawn person from a population of cancer patients.

Clustering columns: For each pair of p-dimensional vectors compute
a dissimilarity. Let D be the n× n-distance/dissimilarity matrix.

Clustering rows: Construct a p× p dissimilarity matrix.
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A (model free) clustering algorithm maps a distance matrix and a
user supplied K into a n-dimensional (or p-dimensional) vector of
cluster labels ranging in {1, . . . , k}.

A clustering algorithm is defined by maximizing a performance
criterian measuring the performance for a given clustering result,
where the maximization is over an allowed set of possible cluster
results.

Keep in mind, given K:

Different criterian =⇒ Different Clusters.
Different allowed set =⇒ Different Clusters.
Differen dissimilarity =⇒ Different Clusters.
Different criterian/dissimilarity/allowed set =⇒ Different
VARIABILITY (across sample fluctuations) of clusters.
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What dissimilarity matrix to use?
What clustering algorithm (defined by allowed set and criterian) to
use?

Approach: 1) Understand the dissimilarity choice, 2) Understand
the criterian and allowed set, 3) Understand variability and 4)
Interpret results. Repeat 1–4 for different choices of dissimilarities
and clustering algorithms.
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BOOTSTRAP

What does variability of clusters mean?
Answer: In general, variance/variability of the sampling
distribution of the clustering algorithm (this is a random vector or
matrix) is a measure of spread of this sampling distribution around
the true wished clustering result (one would have seen if the sample
size is infinitely large).

Consequently, variance of clusters is calculated from a large sample
of clustering results where each clustering result is obtained by
resampling n vectors, and applying the clustering algorithm.

Measuring variability: There are a large number of ways of
measuring the variance of these resampled clustering results
depending on how one measures distance between a sampled
clustering result and the aimed clustering result. Some specific
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proposals, such as cluster specific sensitivity, cluster specific
positive predictive value, gene specific membership probabilities
(with corresponding cluster-probabillity plot), are provided in van
der Laan, Bryan (2001) (www.stat.berkeley.edu/ laan).

How to estimate variability? Resample from an estimate
of the true data generating distribution. For example,
resample n vectors from the empirical distribution of the n vectors
which puts probability 1/n on each observation.

This statistical procedure, that is, resampling with the purpose of
estimating the variance of a data analytic result, is called
Bootstrap.
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CLUSTERING OF MICROARRAY DATA

Clustering has important applications in the analysis of gene
expression data. Consider a sample of n patients and suppose we
collect a p-dimensional gene expression profile on each patient.
Important results can be obtained by:

• Clustering of the p genes (n dimensional vectors).

• Clustering of the n patients (p dimensional vectors).

• Clustering genes, and within each cluster of genes, cluster
patients.

• Clustering genes, reduce each patients’ gene expression profile
to the vector of cluster-specific medoids/centers. This vector of
medoids can be used as a fingerprint and as a set of predictors
of an outcome of interest (e.g. survival).
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Give example of 3 cancer groups of patients. Clustering genes.
What distance would show what clusters of genes? Different
algorithms can still show different results. e.g. hierarchical with
binary splits! is an example of a constraint allowed set. Also show
clustering patients within clusters of genes, we have transparencies
on that.
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DISSIMILARITIES

Possible dissimilarities between a pair of vectors are:

• EUCLIDEAN DISTANCE

• 1 MINUS CORRELATION

• 1 MINUS ABSOLUTE CORRELATION

• 1 MINUS COSINUS ANGLE
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VISUALIZATION OF DISTANCE MATRIX

Assign a color ranging (e.g.) from red (close) to blue (far) to each
pairwise distance dij in the n× n-distance matrix. Now, visualize
the image.

VISUALIZING CLUSTERS:
1) order elements within clusters.
2) order clusters
3) visualize the reordered distance matrix.

Other visualisation tools: visualize elements in two dimensional
plane by projecting on the space spanned by principal components,
visualize reordered data matrix.
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PARTITIONING ALGORITHMS

Possible partitioning algorithms are:

• PARTITIONING AROUND MEDOIDS(PAM). Choose K
centers such that the sum of the distances to the closest center
is minimal.

• PARTITIONING AROUND MEDOIDS MAXIMIZING
AVERAGE SILHOUETTE. Given the cluster labels, for each
element its silhouette is defined as the relative difference
between average distance to its own cluster and average
distance to the neighboring cluster: this is a number between
-1 and 1 (Kaufman and Rousseeuw, 1990). Choose K centers
(which define the clusters) so that the sum of the silhouettes is
maximal.

• KMEANS. Choose K groups such that the sum of the distances
to the closest cluster specific mean is minimal. The typical
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implementation of KMEANS uses the Euclidean Distance.

• SELF-ORGANIZING MAPS. Similar as KMEANS, but it
constraints the allowed set of partitions.

• HIERARCHICAL BINARY TOP-DOWN CLUSTERING. One
splits the group in two clusters. Subsequently, one splits each
of the two clusters in two to obtain 4 clusters and so on.

Note, this restricts the class of allowed partitions: e.g., not each
possible 4 groups is considered as an allowed clustering result.
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Discuss a little simulation 3 groups of patients own groups of genes.
Illustrate different dissimilarities are going to show different things.
Show a picture of clustering results for PAM, PAMSIL.
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HIERARCHICAL CLUSTERING

DOWN-TOP AGGLOMERATIVE CLUSTERING Start with
single element clusters. Collapse the 2 closest clusters into one
cluster and repeat this procedure till all elements are together.
This produces a hierarchical tree. Each level correponds with a
clustering result. Ordering of the clusters is completely
determined by the initial ordering.

NON-BINARY HIERARCHICAL CLUSTERING Same,
but allow partitioning in 2 or more clusters. If one orders the
children of each parent cluster by their distance to closest uncle
node, then running down the tree yields an ordered list. For
details: Hierarchical Ordered Partitioning and
Collapsing Hybrid (HOPACH) (van der Laan, Pollard,
2002).
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SELECTION OF NUMBER OF CLUSTERS

A difficult (ill posed) problem!

Visualization of ordered distance matrix for different number of
clusters K is a helpful tool to select number of clusters.

Formally, the idea is to come up with a criteria measuring strenght
of a clustering result, which allows comparison of clustering results
for different K, so that its maximum defines an “optimal” number
of clusters.
The problem is: Different criteria give different ”optimal clustering
results”.

A large collection of proposals have been made (for a overview of
literature and new proposals, see papers on websites
www.stat.berkeley/ dudoit and www.stat.berkeley/ laan)
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CRITERIA REQUIRING RESAMPLING For example,
define optimal K in terms of 1) performance of cluster result as
classifier (Dudoit, Frydland, 2002),
2) variability of clusters,
3) statistical significance of distance between clusters.

DIRECT CRITERIAS For example,
1) average silhouette,
2) average of cluster specific homogeneities.
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STATISTICAL INFERENCE WITH MICROARRAY
DATA

Mark J. van der Laan
UC Berkeley, Biostatistics

Fred Hutchinson Cancer Institute
March 31, 2000
Based on joint paper with
Jennifer Bryan.
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NUMERICAL SUMMARY OF ONE
MICROARRAY EXPERIMENT

Each microarray experiment yields a list X of p ratios representing
the relative gene-expression profile.

TERMINOLOGY:
Xj > 1: gene j is overexpressed.
Xj < 1: gene j is underexpressed.
Xj 6= 1: gene j is differentially expressed.
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PARTICULAR TYPE OF EXPERIMENT

EXPERIMENT: Randomly sample (e.g. colon, breast) cancer
patients and for each patient

• Extract healthy and cancerous tissue.

• Carry out a microarray experiment to obtain the list of p ratios
representing the relative gene-expression profile of cancerous
versus healthy tissue for the p genes.

Denote this list of ratios with X. Let Y be the list of truncated
log-ratios.

DATA SET: Our complete data set consists of n (samplesize)
observations Y1, . . . , Yn of Y .

REMARK: Sample size n (e.g.100) is much smaller than number
of genes p (e.g. 100,000)
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SOME QUESTIONS ASKED

• What subset of the p genes cause cancer in an significant
proportion of subjects, or at least are drug development
targets?

• What groups of genes are dancing together.

• For the important findings, what is the probability that I can
reproduce these findings?

• What sample size do I need?
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SUBSET PARAMETERS

Let

µ ≡ EY

Σ ≡ E
{
(Y − µ)(Y − µ)>

}
ρ = CORRELATION MATRIX OF Σ.

Let
(µ,Σ) → S(µ,Σ) ∈ {0, 1, . . . ,K}p

be a “subset rule” of interest.

DIFFFERENTIAL EXPRESSION RULES: Given user supplied
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δ1, δ2

S(µ) = {j : µj > δ1}

S(µ) = {j : max(µj ,−µj) > δ1}

S(µ,Σ) = {j : µj > δ1 − q0.7σj}
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CLUSTERING RULES:
Given user supplied δ1, δ2
STEP 1: Apply simple rule to start with: e.g. Select all
δ1-differentially expressed genes.
STEP 2: Compute distance matrix d = (dij : i, j) for remaining
genes, using distance

dij = 1− | ρij | .

Provide distance matrix to cluster program “Partitioning around
Medoids” (PAM, Kaufman and Rousseeuw, 1990). This defines the
clusters by the medoids and assigns a cluster-membership to each
gene.
STEP 3: Thin out the clusters by deleting genes with links (or
silhouette) weaker than δ2. This also deletes False Positives.

SUPERVISED CLUSTERING
Find genes highly correlated with known master genes.
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ESTIMATION AND CONSISTENCY

Let (µn,Σn, ρn) be the empirical counterparts of (µ,Σ, ρ). We
estimate S(µ,Σ) with S(µn,Σn).

[Consistency]
Let p = p(n) be such that n/ log(p(n)) →∞ as n→∞ and
M <∞. As n→∞, then

sup
j
|µn,j − µj | → 0 in probability

and
sup
ij
|Σn,ij − Σij | → 0 in probability.

This implies P (S(µn,Σn) = S(µ,Σ)) → 1 if n→∞ and
n/ log(p(n)) →∞.
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WHAT SAMPLE SIZE DO I NEED?

Let n∗ be the sample size needed to make sure that with
probability 0.95 the observed average expression level of EACH
gene is within a DISTANCE ε of the TRUTH.

We can derive a closed form lower bound for this sample size in
terms of maximal noise level, number of genes, wished precision ε.

It depends on the number of genes only through the logarithm of
the number of genes!

Similarly, for the correlation matrix.

Thus data mining and fishing expeditions are allowed, just adjust
sample size slightly
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Put here the two sample size slides!
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NONP. SAMPLE SIZE FORMULA

Let σ = maxj σj . Define

n∗(p, ε, δ,M, σ2) =
1

c(ε, σ,M)
{log(p) + log(2/δ)} ,

where

c = c(ε, σ2,M) ≡ ε2

2σ2 + 2Mε/3
.

If n > n∗(p, ε, δ,M, σ2), then

P

(
max
j
|µn,j − µj | > ε

)
< δ

With this formula we can compute the sample size for which the
probability that “low-differentially expressed genes make it into
S(µn,Σn)” is smaller than δ = 0.05.
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For example, (log(3)− log(2) = 0.41)

n∗(100000, ε = 0.41, 0.1, 2, 0.5) = 133

n∗(5000, ε = 0.1, 0.1, 2, 0.5) = 1304

n∗(5000, ε = 0.5, 0.1, 2, 0.5) = 77

n∗(5000, ε = 0.5, 0.01, 2, 0.5) = 92

n∗(5000, ε = 1.0, 0.05, 2, 0.5) = 28
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SIMULATION FOR
UNIFORM DIFFERENCES

Noise Level: Suppose that all genes are independent with standard
deviation σ = 0.5.
Sample size: Suppose that we have 150 subjects.

10 1000 10000 100000

Max.Diff.Means 0.08 0.14 0.16 0.18

0.9-Quant 0.09 0.16 0.18 0.19

Max.Diff.Stdev 0.06 0.10 0.12 0.13

0.9-Quant 0.08 0.11 0.13 0.14
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p=10 p=100 p=1000

Max.Diff.Cor 0.2 0.31 0.39

0.9-Quant 0.23 0.33 0.41

If we set n = 200, p = 1000, then DIFCOR=0.34.
If we set n = 1000, p = 1000, then DIFCOR=0.15.
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Suppose now that the true correlations between M independent
pairs of variables is 0.8.

10 1000 10000 100000

Max.Diff.Cor 0.07 0.15 0.18 0.22

0.9-Quant 0.09 0.16 0.2 0.24
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Remark that in subset rule we only apply clustering and thus look
at correlations for genes which make first cut of. e.g. 300 genes.
Since mun is independent of Σn this is fine. So for knowing how
good our correlation matrices for the clusters are we only have to
set p = 300.
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PARTITIONING AROUND MEDOIDS

• Define a distance matrix for the elements (genes or subjects)to
be clustered: e.g. for genes we use correlation or absolute
correlation distance.

• Provide distance matrix to cluster program “Partitioning
around Medoids” (PAM, Kaufman and Rousseeuw, 1990) and
specify number of clusters.

This finds data adaptively the best centers (medoids) of the
clusters and assigns a cluster-membership to each element.

• For each element it computes a silhouette measuring how
strong it belongs to its cluster.

• Number of clusters is obtained by minimizing average
silhouette.
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put here ALL, AML clustering subjects plots
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HOW RELIABLE???

How reliable is the observed structure or observed subset and
clusters?

Examples of observed features:
4 genes in the same cluster.
Gene has correlation larger than 0.5 with a master gene.
Gene is more than 3-fold differentially expressed.

For example, if we repeat the experiment, how likely is it that one
can reproduce the findings?

BOOTSTRAP: Simulate an approximation of the experiment many
times and find out!
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CONFIDENCE-LEVEL PARAMETERS
OF INTEREST

Possible parameters of the distribution of Ŝ ≡ S(µn,Σn) are:
Feature Probabilities:
Consider an observed feature: e.g.
1) gene j is in the subset estimate.
2) genes i, j were both in the subset estimate.
3) genes i, j were both in the subset estimate and in the same
cluster. We can define the corresponding feature probability:

pj,n = P (Ŝj > 0)

Pij,n = P (Ŝi > 0, Ŝj > 0)

Qij,n = P (Ŝi = Ŝj > 0)

RESULT: If n→∞, then these probabilities converge uniformly
to the features of the true subset S = S(µ,Σ), even when p = ∞.
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Performance measures:
“Sensitivity” and “Positive Predictive Value” of Ŝ:

sensn = E

{
|S ∩ Ŝ|
|S|

}

ppvn = E

{
|S ∩ Ŝ|
|Ŝ|

}
.

The distribution of the proportion of “Extreme False Positives”
which make it into the subset estimate.
Uniform Distances. 0.95-quantiles of

Maxdif.mean = max
j
| µnj − µj |

Maxdif.cor = max
ij

| ρn,ij − ρij | .
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PARAMETRIC BOOTSTRAP

RESAMPLING: We estimate distribution of Ŝ by resampling
from an estimated distribution of the true data generating
distribution. Since Ŝ only depends on the mean and covariance
matrix, we want to resample data with the (asymptotically) the
right mean and right covariance matrix (and we want NO TIES).

RESAMPLE FROM A MULTIVARIATE NORMAL
DISTRIBUTION:

• Resample n observations Y #
1 , . . . , Y #

n of Y # ∼ Np(µn,Σn).
Construct estimate
S(µ#

n ,Σ
#
n ).

• Repeat: Obtain B i.i.d observations of S(µ#
n ,Σ

#
n ).

• Computate relevant parameters of this empirical distribution of
S(µ#

n ,Σ
#
n ).
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ASYMPTOTIC VALIDITY:

Nonparametrically, if n/ log(p(n)) →∞ and M <∞, we have that
1) the bootstrap estimate of the distribution of

√
n(µn − µ) is

consistent and
2) S(µ#

n ,Σ
#
n ) converges to the degenerate distribution at S(µ,Σ).

Thus the estimated feature probabilities converge to the true
features: e.g. p#

j,n → I(j ∈ S).
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SIMULATING THE NULL
DISTRIBUTION

To make sure that observed structures are not due to pure noise,
one simulates from a multivariate normal distribution with either
1: No differential expression and no correlations or
2: No differential expression and observed covariance matrix.
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SIMULATION STUDY

SAMPLE SIZE: 60.
NUMBER OF GENES: 1500
TRUE COVARIANCE MATRIX: block diagonal with three blocks
of correlated genes.
SUBSET RULE: PAM-based subset rule with three clusters applied
to δ1-differentially expressed genes. We required sufficiently small
distance between medoid or any previously included gene: see table.
TRUE SUBSET: Apply subset rule to true (µ,Σ).
TRUE FEATURE PROBABILITIES: pj are the proportion of
times gene j falls in subset estimate in the actual simulation.
TRUE SENSITIVITY, PPV etc: Similar.
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SIMULATION: 1) Sample 60 subjects from true distribution. 2)
Do the parametric bootstrap (200 resamples) to obtain estimates of
the feature probabilities pj,n and other quantaties of interest. 3)
repeat 1) and 2) 200 times.

Mean Correlation

Cutoff Cutoff

|µj | > log 2.7 ≈ 0.99 |ρij | > 0.5

|S| avg |Ŝ| avg |Ŝ#|

30 26.9 26.61
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p = 1500,n = 60 True Bootstrap

Sensitivity 0.73 0.78

Predictive Value 0.82 0.79

Prop. of Ext. False Pos. 0.00 0.00

Any Ext. False Pos. 0.00 0.00

Expected Lgst. Abs. Dev. 0.46 0.46
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we need the table with pj probabilities. show clustering subjects
ALL, AML, show probability plot for 9 clusters and show one of
cluster plots.
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