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General Topics Covered:
1) Resampling Based Multiple Testing
2) Clustering

4) Cross-validated Selection with Censored Data

5) Algorithms for construction of Estimators

)
)
3) Cross-validated Selection among Estimators
)
)

Subtopics:
Classification and Regression, Regression on multivariate outcomes,
Regression on censored outcomes (Prediction of survival),

conditional density and hazard estimation.
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Applications in Genomics:

a) Detection of binding sites in gene expression experiments,

b) Regression of single nucleotide polymorphisms (SNP’s), gene

expressions, comparitive genome hybridization measurements, and
epidemiologic variables, on clinical outcomes such as survival or
time till recurrence,

c) Clustering protein structures, classifying or predicting protein
structures, clustering genes/patients based on gene expression
experiments

d) many others.
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DATA AND NULL HYPOTHESES

Data: Xq,...,X,, i.i.d. observations of a multidimensional vector
X ~ P e M for a model M.

e gene expression measurements
e gene expression, covariates, and outcomes (e.g.: survival)
e SNPs, covariates, and an outcome (e.g.: response to treatment)

e occurance of sequence motifs and gene expression.

Parameters: Real valued parameters ,uj(P), 9
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Examples of Parameters:
e location parameters (means, medians, differences in means)

e regression parameters (association between gene j’s expression
and outcome)

e Survival probabilities.

Null Hypotheses:

Hoj:pj(P)=p3, j=1,...,p,

where p3 are hypothesized null values.
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TEST STATISTICS

Test Ho ;,5 = 1,...,p, with T},, defined by

Tin = tjn —
Hjn — M?
&(Mjn)

or Tjn

We assume that p;, is an asymptotically linear estimator of pu;,
that is,

Vi — ) = — S IC; (X P) + op(1), (1

1=1

for some function X — IC;(X|P), j =1,...,p. Then, we know
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that as n — oo

Zn = vlin — u(P)) 2 N(0,%(P)),

where
N(P)=Ep(IC(X | P)IC(X | P)")
is the covariance of the vector influence curve
IC(X |P)={IC;(X |P):j=1,...,p} of .
Let
Z ~ Qo(P) = N(0,%(P))

represent the limit (in distribution) of Z,.

Page 9



ERROR RATES

Given a vector ¢, consider a corresponding multiple testing
procedure MT'(c) defined by:

Reject Hy j, if | Tjn |>cj, j=1,...,D, (4)

Let:

o Vi(c) =201 I(| Tjn |> ¢j, 5 (P) = i) be the number of false

positives of MT(c),

e For a candidate cdf F of V,,, let 8(F') € (0,1) measure a
particular type-I-error rate satisfying 1) continuity in F' and 2)
monotonicity in F' in the sense that 0(F) > 0(G) if F' < G.
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Examples of Error rates 6(Fy, ):

o [xzdFy, (x)/p= E(V,)/p: per-comparison error rate (PCER),

o [xzdFy, ()= E(V,) : per-family error rate (PFER),

- (0) = Pr(V,, > 1): family-wise error rate (FWER),
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SINGLE STEP CUT-OFF RULE and ERROR CONTROL

Let ¢ = ¢(Q, ) denote a vector function cut-off rule such that if
T, ~ @, then MT(c) has the property that 0(Fg, ()) = «, where

p
ZI Tjn [> ¢;).

J=1

A sensible cut-off rule: set ¢; equal to the 1-0-quantile of the
j-th marginal distribution of (), where ¢ is fine-tuned to yield

control at level a.

So, MT(c) = MT(c(Q,«)) depends critically on the choice of
distribution () under which the error rate is controlled.
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We want to choose an estimated distribution (),, so that

cn = ¢(Qn, ) satisfies

limsup0(Fy, ) < a.

n—aoo

That is, for large enough sample size, the error rate «a,, for a sample

of size n is bounded from above by the target error rate a.
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NULL DISTRIBUTIONS

Let @, (P) be the distribution of the test statistics under X ~ P.
We seek to control the error rate under a test statistic
distribution that satisfies the overal null hypotheses and is as
close as possible to the true test statistic distribution @, (P).

Therefore, the correct null distribution is the projection of @, (P)

onto the space of mean zero distributions.

NOTE: Current approach is to choose a null data generating
distribution Py € Mg = {P : u(P) = uo}, and control error rate
under @, (Fy).
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Let Py = Py(P) =1II(P | Mgy) be a projection (e.g.
Kullback-Leibler) of the true data generating distribution onto M.
Let Qon = Qon(P) =I1(Q,(P) | Qp) be the projection of the
test-statistic distribution @, (P) onto the space of mean zero

distributions. In general,

lim Qon = N(Oa E(P»# lim Qn(PO) — N<07 Z(PO))'

n—oo n—oo
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RESULTS:
1. Let Qo = N(0,3(P)). If ¢g = ¢(Qo, ) then MT(cg)

asymptotically controls the error rate at level «.

2. Let Qo be an estimator of Q. Let con, = ¢(Qon, ) and

SUPPOSE Con — Co = c(Qo, ) for n — co. Then

lim sup 6 (FVn(cOn)) < a.

n—oo
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ESTIMATION: Estimate (g with Qq,,, €.g.:
e o, = N(0,3,). Provides asymptotic control.
e Bootstrap method. Provides asymptotic control.

e ),(Pon), where Py, is an estimated data null distribution.

Does not provide asymptotic control unless

%(Fo) = %(P). (6)

Condition @ is the formal analogue of the subset pivotality
condition (Westfall and Young, 1993, p.42-43).
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BOOTSTRAP ESTIMATED NULL DISTRIBUTION

Suppose T, = v/n(pn — o). Let
e P, be an estimator of P according to model M.
(i, = 1(P,) be the parameter estimate under P,

e 17 be p, applied to n i.i.d. copies Xfé, o, X oof X~ P,

o Q#n be the distribution of Z# = /n(u# — [iy,)

Estimate )y with Q#n. Under weak regularity conditions, it is

known that Z7 2 7~ (0o conditional on pn, and hence Qo
consistently estimates ().
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p
ZI |> c;)

g=1

and let ¢, = C(Qon, «): that is, it satisfies 0 ( R (c )> — «. Then,
MT(c,) is a bootstrap based multiple testing procedure

asymptotically controlling 6(Fy;, ) at level a.
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TWO SAMPLE PROBLEM

Suppose we have ny observations from Population 1 with mean p4
and no observations from Population 2 with mean pus.

Null Hypotheses: Hg ; : pj = p2; —p1,, =0,7=1,...,p.

Test Statistics:

D,

or Tjn
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COMPARISON OF NULL DISTRIBUTIONS

Let COV (X, X,,) be ¢1 in population 1 and ¢2 in population 2.

Distribution Var(D;y,) | Cov(Djyn, Djm)

. g4 - O5
Permutations | —=% 4 —2 b1y P2
n2 ni no n1

Bootstrap 71 4 2. % + %

ni n2

Note:

o VAR(Tj,) =1 for both distributions.

e But the two expressions for COV (1}, T};,) are not equivalent

unless ny = ns.
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EQUIVALENCE: MULTIPLE TESTING/CONFIDENCE REGIQN

Let ¢, = ¢(Q¥, ). Then, the random region {y : /1|, — pt| < cp?}
or

C .
{N:Njn_\}ﬁ<ﬂj<ﬂjn+73_l p} (7)
is a f-specific (1 — )% confidence region for u(P).
The multiple testing procedure MT(c,) equals:

Cjn Cjn

\/—7M3n‘|—ﬁ

Reject Hy; if ,u? is outside the interval [,ujn —

for j =1,...,p.
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The correlation example

Suppose we observe n i.i.d. observations Xi,...,X,, of a vector
X = (X(1),X(2),X(3)). For the sake of illustrations, we will
assume that the variables are standardized so that VAR(X (j))

7 =1,2,3, and suppose that we assume the parametric model

X ~ N(0, p), where p is the correlation matrix of X. Let p;,
jeJ={(12),(13),(23)} denote the three unknown correlations.
Suppose we are concerned with testing Hy ; : p; =0, 7 € J. Let

Pin, J € J, be the empirical correlations, and suppose that we use
as test-statistics T,,; = v/npjn. Let So = {j € J: p; = 0} be the set
of true nulls.

Let Q.1 = Q,,(Fp) be the null distribution of T;, under the data
generating distribution Py = N(0, 1), where I denotes the identity
matrix. Let Q2 be the distribution of \/n(p, — p). One wants to
choose a null distribution which is such that the sub-distribution
corresponding with the components in Spequals or approximates
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well the actual distribution of T;,;,7 € Sp. It follows immediately
that the sub-distribution of (), corresponding with the
components in Sy equals (by definition) the distribution of

Thji,7 € So. Consequently, an estimate of the limit distribution of
(0,1 as one obtains with either the nonparametric bootstrap, or
model based bootstrap, or influence curve approach, consistently
estimates the actual distribution of 7;,;, 7 € Sp. We will now show
that the sub-distribution of (),,; fails to do this.

Firstly, if the components of X are uncorrelated, then it follows
immediately that the three empirical correlations are independent.

Consequently, by the CLT it follows that @, (Fy) converges to a
N(0,I). However, two empirical correlations corresponding with

true nulls are not necessarily (asymptotically) uncorrelated. For

example, suppose that p13 = p23 = 0, but pa3 # 0. Then it follows

that

D
\/ﬁ(pn127 pnlS) — N(07 20)7
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where the 2 by 2 matrix > is 1 on the diagonal and po3

off-diagonal.
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DATA ANALYSIS
The publicly available data set of Alizadeh et al. (2000):

e Blood samples from n = 40 Diffuse Large B-Cell
Lymphoma (DLBCL) patients

Expression of p = 13,412 clones (relative to a pooled control)
measured with cDNA arrays

Patients belong to two molecularly distinct disease groups:
— ni = 21 Activated with mean u;

— no = 19 Germinal Center (GC) with mean uo
Survival time T measured on each patient
Pre-processing:

— log,

— replace missing values with the mean for that gene

— truncate ratios exceeding 20-fold to =+ log,(20)
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DIFFERENCE IN MEANS: METHOD

Null hypotheses: for j =1,...,p

Ho,j : pj = po,5 — p1,5 = 0.

Test statistics: T}, = K — 2,5~ X1,

Sd(,UJjn) o \/6%’j/n1—|—6§,j/n2 |

Control the usual FWER: Pr(V > 1) = a = 0.05

Estimated null distributions and thresholds:

1. Fine-tuned common quantiles with the non-parametric

bootstrap distribution,

. Fine-tuned common quantiles with the permutation

distribution,

. Bonferroni common threshold with the tabled t-distribution.
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DIFFERENCE IN MEANS: RESULTS

Null Distribution Rejections

Non-parametric bootstrap | 186

Permutations 287

T-distribution 32

Number of rejected null hypotheses (out of p = 13,412) for three

different choices of multiple testing procedure. All 32 of the genes
in the t-distribution subset are in both the permutation and the
bootstrap subset, and the bootstrap and permutation subsets have

156 genes in common.
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LOGISTIC REGRESSION: METHOD

Logistic Regression Model for each gene: 5 =1,...,p

eB0.,i+01,5%X;

1 + ePo.j+B1,*X;

E(Group | X;) =

Null hypotheses: for j =1,...,p

Ho,j : 1,5 = 0.

Test statistic: v/n * Bip.
Control the gFWER Pr(V > k) =a =0.05 for £k =1,...,100.
Fine-tuned common quantiles.

Estimated null distributions: Nonparametric bootstrap.

RESULTS
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k = 1 10 | 50 | 100 | 200
Rejections | 303 | 303 | 303 | 471 | 553

Table 1: Logistic Regression Parameters. Number of rejected null

hypotheses (out of p = 13,412) using the non-parametric bootstrap
estimated null distribution and controlling the gFWER P(V,, > k)
for different choices of k, where V,, is the number of false positives.
The test statistics used are \/n * (3, — 0).
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LINEAR REGRESSION: METHOD

Accelerated failure time model for each gene: 7 =1,...,p

E(log(T) | X;) = 70,5 + 71,5 * X

Use an Inverse Probability of Censoring Weighted (IPCW)
estimator for v since survival is right-censored for some

patients.

Null hypotheses: for j =1,...,p
H()’j - V1,5 — 0.

Test statistic: /n * yin.
Control the gFWER Pr(V > k) =a =0.05 for k=1, ...,100.

Fine-tuned common quantiles with the non-parametric
bootstrap distribution.

Could do for each disease group (Activated and GC) separately
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and compare lists of significant genes.

e RESULTS soon...
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SIMULTATIONS USING REAL DATA

e Sample from the data set derived from Alizadeh et al. (2000)

e p = 100 random genes, centered to have mean zero in both

groups.
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Permutation | Non-parametric | Parametric

Bootstrap Bootstrap

n,y = 5,712 =15
D, 0.21 0.025 0.085
T 0.020 0.025 0.020

n1 =9 n2 =11
D; 0.13
T 0.015
n1 = 10,n2 = 10
D; 0.17 0.060 0.070
T 0.020 0.055 0.035

Estimates & of the error rate Pr(V > 10) over I = 200 independent

simulated data sets for null distributions of D; and Tj. The target error

rate is a = 0.05.
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CONCLUSIONS

. Qo = N(0,%(P)) is the asymptotically correct null distribution
for the test statistics /n(u, — u°) and it provides asymptotic

control of type I error rates that are a function of the

distribution of the number of false positives.

. For a finite sample, (o can be consistently estimated with the

standard bootstrap.

. Common practice of estimating )y via a data null distribution

Py only provides asymptotic control when 3 (Fy) = %(P).

. Multiple testing is equivalent with constructing an 0.95-error
specific confidence region (e.g. using the bootstrap).

. Two Sample Problem: Permutation data null distribution P,
has the wrong asymptotic covariance unless ny = ng or X7 = X
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Multiple hypothesis testing framework

Model. Let X;,...,X,, be nii.d. copies of a random variable

X ~ P e M, where P is known to be an element of a particular
statistical model M (possibly nonparametric). Let M; C M be a
collection of m submodels and let Hy; = I(P € M,) be the
corresponding set of null hypotheses, 57 = 1,...,m. Thus, Hy; is
true if P € M and false otherwise.

Let So = So(P) ={j: Ho; is true} = {j : P € M, } be the set of
mo = |So| true null hypotheses, where we note that Sy depends on

the true data generating distribution P. Let
S¢=S5(P)=1{j:j ¢ So} be the set of m; = m — my false null
hypotheses, i.e., true positives.

Example: Hy; : pu(j) < po(g), where the pu(j) = p(y | P) are

real-valued parameters
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Type I error rates. Decision to reject or not the null hypotheses

are based on test statistics T,,(j), 7 = 1,...,m, where we assume

that large values of T,,(j) provide evidence against the null
hypothesis Hy;. Let T,, = (T,,(j) : j = 1,...,m) be the

corresponding m-vector of test statistics, with joint distribution
Qrn = Q. (P). The end-product of single-step or stepwise multiple
hypothesis testing procedures is a set,

Sp=8(X1,...,Xn;Qo, ) C{1,...,m}, of rejected hypotheses,
i.e., of null hypotheses believed to be false.

Page 39



S(X1,...,Xn;Qo, ), the set S, depends on the data, X1,...,X,,
the choice of null distribution ()¢ for computing cut-offs for the test
statistics or p-values, and on «, the nominal level of the test).

Two types of errors can be committed: a false positive, or Type [
error, is committed by rejecting a true null hypothesis, and a false
negative, or Type II error, is committed when the test fails to reject
a false null hypothesis.

The situation can be summarized by the table below, where the
number of Type I errors is V,, = |S,, N .Sp| and the number of Type
II errors is U, = |S¢ N S§|. Note that both U,, and V,, depend on
the unknown data generating distribution P through Sy = Sy(P).
The numbers mg = |Sg| and my = m — mg of true and false null
hypotheses are unknown parameters, the number of rejected

hypotheses R, = |S,| is an observable random variable, and

mi1 — U,, U,, mg —V,, and V,, are unobservable random variables
(depending on P, through Sy(P)).
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Table 2: Type I and Type II errors in multiple hypothesis testing.

Null hypotheses

not rejected rejected

Null hypotheses

false
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Type-1I Error Rate

In general, we make the following assumptions for the parameter
0(Fy, ) defining a particular Type I error rate. Given the distance
measure d(F, F3) = maxgcqo,.m} | F1(x) — Fa2(x) | for two
cumulative distribution functions F; and F5 on {0,...,m}, we
assume that the parameter 6(F’) satisfies the following properties,
where F represents a c.d.f. on {0,...,m} for V.

Monotonicity.

It F1 Z FQ, then (9(F1) S Q(Fg)

Uniform Continuity.

If d(F,,G,) — 0, then 6(F,) — 0(G,,) — 0,
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or equivalently,

sup | 0(F) —0(G) [=0

{(F,G):d(F,G)<d,}
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Adjusted p-values

As in the single hypothesis setting, multiple testing procedures may
be described in terms of p-values. Given any multiple testing
procedure, the adjusted p-value corresponding to the test of a single
hypothesis Hy; can be defined as the nominal level of the entire
procedure at which Hy; would just be rejected, given the values of
all test statistics involved. In terms of our previous notation, the
adjusted p-value for hypothesis Hy;, given a multiple testing
procedure S, = S(X1,...,Xn;Qo, @), is

pn(j) =inf{a€0,1]:j € S(Xy,..., X,;Qo, )}, (10)

where the nominal Type I error rate is the a-level at which the

specified procedure is performed. Hypothesis Hy; is then rejected

at nominal Type I error rate « if p,,(j) < . This definition of

adjusted p-values applies to procedures controlling any type of
error rate, e.g., gFWER, PCER, FDR.
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As in the single hypothesis case, an advantage of reporting adjusted

p-values, as opposed to only rejection or not of the hypotheses, is

that the level of the test does not need to be determined in
advance, that is, results of the multiple testing procedure are

provided for all a.
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Single Step Multiple Testing Procedure

A hypothesis Hy; is rejected if T,,(j) > ¢;, for an m-vector of
cut-offs c = (¢; : j =1,...,m). Denote the number of rejected
hypotheses and Type I errors by

R(c| Q) Z I(T,(5) > cj) and

V(ic| Q) ZI ) > c;),

J€So

respectively, where the notation R(c | @) and V(c | Q)
acknowledges that the distribution of the above sums is defined by
a distribution () for the test statistics T,,.
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Procedure 1. Single-step procedure — control of general
Type I error rates 0(Fy, ).

Given a null distribution @, define a vector of cut-offs ¢(Qq,d) =
(¢j(Qo,0) : 5 = 1,...,m) for the test statistics 7, such that
c;(Qo,0) is the (1 — d)—quantile of the marginal distribution Q;,

j=1,...,m. Let 0 be chosen as

50 — (50(0&) — max{é . 9<FR(C(Q0,5)|Q0)) < Oé}. (11)

Here ¢(Qg, 0g()) is referred to as the common-quantile cut-off rule
for type-I-error 6 based on the null distribution )g.

The single-step multiple testing procedure for controlling the Type
[ error rate 8(Fy, ) at level « is defined by

Reject Hy; if T5,(7) > ¢;(Qo, do(v)),
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Rather than simply reporting rejection or not of the hypotheses at
a prespecified level a, one can report adjusted p-values for
Procedure 1, computed under the null distribution ()¢. The
adjusted p-value for hypothesis Hy; is given by

~

Po(7) = 0(FRr(c(Qo.60,)|Q0))s  Where  do; = Qo;(Tn(j)) (12)

and on, 7 =1,...,m, denote the marginal survival functions
corresponding to the null distribution ()¢. The procedure for
controlling the Type I error rate at level a can then be stated

equivalently as

Reject Hy; if P,(j) < a,
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Theorem: Given a null distribution g and a € (0, 1), denote the
number of Type I errors for Procedure 1 by

Vi = Lf( (620750 |an 2{: [ >>(% 620750( )))

JE€So

where @, = @, (P) is the (finite sample) joint distribution of the
test statistics T,,. Assume that there exists a random m-vector

Z ~ Qo = Qo(P) so that

lim inf Pr ZI (7) >¢j) <x | > Prg, ZI ) >cj) <x

—> 00
JE€So J€So

(13)
Then Procedure 1 provides asymptotic control of the Type I error
rate O(Fy, ), that is,
limsupf(Fy, ) < «

n—oo
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Explicit Proposal for Null Distribution
Suppose that there exists known m-vectors 6y € R"™ and 7o € R™
(null values), so that

limsup E'T;,(j) 0o (7) (14)

n—aoo

limsup Var|T,(5)] < 70(j), for 7 € Sy.

n—oo

N 70(J)
onld) =i (1,7 )
and define the m-vector Z, ~ Qon = Qon(P) by
)

Z0(5) = V0on(G) (Ta(i) + 00() = ET,()), G =1,...,m. (15)

Suppose that

(Zn(7) : 5 € S0) = (£(§) : 7 € So), (16)

where we allow various components of Z ~ Q¢ = Qo (P) to be
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degenerate ( e.g., at —o0). Then, for this choice of null distribution

Qo and forallc=(¢c;:7=1,...,m) and

lim inf Pr ZI (4j) >¢;) <z | > Prg, ZI ) > ;)

n—0o0
71ESH 71ESH

so that the previous Theorem applies.

Practical remark: Given the null values 6y, 79 for the mean and
variance of the test-statistic distribution (when the null would be
true), respectively, this explicit proposal for the null distribution
corresponds with 1) simulate a large number B of vectors T;, from
the actual true distribution @,,(P), 2) compute the marginal
expectation ET,, and variance VAR(T},), and 3) make the

m X B-matrix /vo, (T, — ET;, + 9.
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Step-down Procedures for FWE

We propose two step-down multiple testing procedures, based on a
null distribution Qg = Qo(P) that provides asymptotic control of
the family-wise error rate, without the requirement of subset
pivotality. The first procedure involves maxima of the test

statistics T5,(j) (maxT, Procedure 2) and the second is based on

minima of p-values P, (j), also computed under the null )¢ (minP,
Procedure 3).
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Procedure 2. Step-down procedure based on maxima of
test statistics (maxT) — control of FWER

Let T,, () be the ordered test statistics, 1), (1) = ... > T}, (m), and
R,,(j) the indices for these order statistics, so that

T,y = Tn(Rn(j)), j = 1,...,m. Given a null distribution Qo and
a € (0,1), define (1 — a)—quantiles, c¢(A) = ¢(A, Qo, ) € R, for
maxima of random variables Z = (Z(j) : j=1,...,m) ~ Qo over
the complements of subsets A C {1,...,m}

¢(A) = inf {c . Pro, (maxZ(j) < c> > 1 — a} .

JEA

Given the indices R, (j) for the order statistics T, (;), define

(1 — a)—quantiles

Cn(j) = c{Bn(1),..., Bn(j — 1)}, Qo @)
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and test statistics

T, i, T, _1y>Chg—1
T = () (=) Y ), j=1,...,m.
n,(J) :
—00,  otherwise

The step-down maxT multiple testing procedure for controlling the
FWER at level « is defined by

Reject Ho g, ;) it T,

)5 Call), =1

,(J
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Adjusted P-values

Note that the definition T, ) = —%; if Ty, -1y < Cn(j — 1),
ensures that the procedure is indeed step-down, that is, one can
only reject a particular hypothesis provided all hypotheses with
larger test statistics were rejected beforehand. Rather than simply
reporting rejection or not of the hypotheses at a prespecified level
a, one can report adjusted p-values for Procedure 2, computed
under the null distribution )y. The adjusted p-value for hypothesis

Hy g, ;) 1s given by

max {PTQO (lE{Rn(maX Z(1) > Tn(Rn(k))> } .

k=1,... k),...,.Rn(m)}

(17)
Here the adjusted p-values are conditional on the observed test
statistics and their ranks. The procedure for controlling the FWER
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at level a can then be stated equivalently as

~

Reject Ho g, ;, if Po(Rn(jf)) < a, j=1,...,m.
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Assumptions

In order to prove asymptotic control of the FWER by Procedure 2,

we make the following two assumptions.

Assumption A1T. There exists an m-dimensional random vector
Z ~ Qo(P) so that

lim sup Pr (maXTn(j) > :13) < Prg, <maXZ(j) > :1:) for all x.

n— 0o JE€So JE€So

(18)
We also assume that for a € (0, 1)

A . 19
Ag?ll,ax,m} C( 7Q07 Oé) < o0 ( )

Assumption A2T. There exists a degenerate maximal value M;
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(e.g., +00) so that for all M < M;

Pr (minTn(j) ZM) — 1 as n — 00 (20)

jESE

lim lim Pr <maXTn(j) > M) = 0. (21)
MTM; n—o0 J1€So

Note that these assumptions only require that 7, represents a
sensible set of test statistics.
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Theorem: Given a null distribution )y and a € (0, 1), denote the
number of Type I errors for Procedure 2 by

m

g=1

Suppose Assumptions A1T and A2T on the test statistics T,,(7)
and null distribution )y hold. Then, Procedure 2 provides
asymptotic control of the family-wise error rate at level «, that is,

limsup Pr(V, > 1) < a.

n—oo

If (18) in Assumption A1T holds with equality, then asymptotic

control is exact:
lim Pr(V, >1) = qa.

n—aoo
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Outline Proof.

Note that, with probability one in the limit, the first m; = |S§|
rejected hypotheses correspond to the m; false null hypotheses.

Thus, no Type I errors are committed for these first m; rejections

and one can focus on the mg least significant statistics, 7, n,(j)

7 =mq+1,...,m, which now correspond to the test statistics for
the true nulls, T},(j), 7 € Sg. By definition of the step-down
procedure, a Type I error is committed iff max;ecgs, 10, (j) > C(S§),
which is controlled at level a. Thus, conditional on having rejected
the first my correct rejections, with probability 1 — « the procedure

will not reject at step mq + 1 and thus result in zero false rejections.

Remark: Local alternatives cause non-control of FWE for

step-down procedures.
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Step-down procedure (FWE) based on minima of p-values

Procedure 2 above is a step-down analogue of the single-step
common-cut-off procedure. One can also prove asymptotic control
of the FWER for an analogue of Procedure 2, where maxima of
test statistics T, (j) are replaced by minima of unadjusted p-values
P,.(7), also computed under the proposed null distribution Qq:

P.(5) = Qo;(Tn(j)), where Qo;, j = 1,...,m, denote the marginal

survival functions corresponding to the null distribution (J¢. Such a
procedure corresponds to (2.10) in Section 2.6 of Westfall and
Young (1993), (with the important distinction in the choice of null
distribution Q)g) and is a step-down version of the common-quantile
procedure in Pollard, van der Laan (2003).

Note that procedures based on maxima of test statistics (maxT)
and minima of p-values (minP) are equivalent, when the test
statistics T5,(j) are identically distributed, j = 1,...,m. In this
case, the marginal survival functions Qq; are the same for each j,
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and thus the significance rankings based on T},(j) and P, ()
coincide. In general, however, the two procedures produce different
results, and considerations of balance, power, and computational
feasibility should dictate the choice between the two approaches. In
the case of non-identically distributed test statistics T},(j), not all
tests are weighted equally in the maxT procedure and this can lead
to unbalanced adjustments. When the null distribution @)y is

replaced by a resampling-based estimator QOn (Section 77),

procedures based on minima of p-values tend to be more sensitive
to the number of resampling steps and more conservative than
those based on maxima of test statistics, due to discreteness when
estimating quantiles. Also, minP procedures require more
computations than maxT procedures, because the unadjusted
p-values P, (j) must be estimated before considering the
distribution of their successive minima.

Finally, note that while nominal p-values computed from a
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standard normal or other type of distribution may not be correct, a

step-down procedure based on minima of such transformed test

statistics nonetheless provides asymptotic control of the FWER
(e.g., P,(j) = ®(T,(j)), where ® is the standard normal survival

function). That is, these p-values can be viewed as just another

type of test statistic T,,(j) and one can appeal to previous
theorems.

Here, however, we propose a step-down multiple testing procedure
where p-values are also defined in terms of the null distribution @)y,
that is, P, (j) = Qoj(T(j)). We therefore have a more specific
procedure and assumptions for proving asymptotic control of the
family-wise error rate. Type I error control by the minP procedure
relies on Assumptions A1P and A2P, below.
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Procedure 3. Step-down procedure based on minima of
p-values (minP) — control of the FWER.

Given a null distribution ()¢, define marginal or unadjusted
p-values as

Po(j§) = Prqy(Z(j) = Ta(j)) = Qoj(Tn(4)), (22)

where Z is an m-dimensional random vector Z ~ )y and on,

7 =1,...,m, denote the marginal survival functions corresponding
to the null distribution Q. Let P, (;) be the ordered p-values,
P, ) < ... <P, (m), and R,(j) the indices for these order
statistics, so that P, ;y = P,(R,(j)), j = 1,...,m. Define
a—quantiles, ¢(A) = ¢(A, Qp,a) € R, a € (0, 1), for minima of

p-values (Qo;(Z(j)) : 7 =1,...m) over the complements of subsets
ACH{L,...,m}

c(A) = inf {c : Pro, (minon(Z(j)) < c) > a} .

JEA
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Given the indices R, (j) for the ordered p-values P, (;y, define

a—quantiles

Cn(]) — C({Rn( )7 ce 7Rn(] — 1)},@0,()4)

and statistics

Pr . = () (G=1) Y ), i7=1,...,m.
n,(J) :
1, otherwise

The step-down minP multiple testing procedure for controlling the
FWER at level « is defined by

Reject Hy g, (5 if Pl < Cn(g),7=1,...,m.
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Adjusted P-values

Note that the definition P} ) =1,if P, (;_1) = Cr(j — 1), ensures
that the procedure is indeed step-down, that is, one can only reject
a particular hypothesis provided all hypotheses with smaller
unadjusted p-values were rejected beforehand. Adjusted p-values
are defined similarly as for Procedure 2. The adjusted p-value for

hypothesis Hy g, ;) is given by

APras (L i, Q026D < PalRalh

LE{ R (k),..., Rn (m)}
(23)
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Assumptions

Theorem below, proves asymptotic control of the FWER by
Procedure 3 under the following two assumptions, which are the

p-value analogues of Assumptions A1T and A2T, respectively.

Assumption A1P. There exists an m-dimensional random vector
Z ~ Qo(P) so that

limsup Pr | mi ' < min Qo;(Z(j)) < a:) for all x,
J

€So
(24)
where on, 7 =1,...,m, denote the marginal survival functions

corresponding to the null distribution Qg = Qo (P). We also assume
that for o € (0,1)

Aggl,i.?,m} c(A, Qp,a) > 0. (25)
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Assumption A2P. For each € > 0,

Pr (maXPn(j) < e) — 1 as n — o0

JESS

lim lim Pr <min P.(j) < e) = 0.
€]0 n—o0 1€S50
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Theorem: Given a null distribution g and a € (0, 1), denote the
number of Type I errors for Procedure 3 by

m

Vo= I(Py 5y < Cu(5), Ru(4) € So)-

j=1

Suppose Assumptions A1P and A2P hold, specifically, conditions
(24), (25), (26), and (27) are satisfied by the p-values P, (j), i.e., by
the test statistics T}, (7) and null distribution 9. Then, Procedure

3 provides asymptotic control of the family-wise error rate at level

a, that is,

limsup Pr(V,, > 1) < a.

n—aoo

If (24) in Assumption A1P holds with equality, then asymptotic

control is exact
lim Pr(V, >1) = qa.

n—aoo

Page 69



Procedure 4. Step-down procedure based on maxima of
test statistics (maxT) — control of GFWER

Let T,, () be the ordered test statistics, 1), (1) = ... > T}, (m), and
R,,(j) the indices for these order statistics, so that

T,y = Tn(Rn(j)), j = 1,...,m. Given a null distribution Qo and
a € (0,1), define (1 — a)—quantiles, c¢(A) = ¢(A, Qo, ) € R, for
maxima of random variables Z = (Z(j) : j=1,...,m) ~ Qo over
the complements of subsets A C {1,...,m}

¢(A) = inf {c . Pro, (maxZ(j) < c> > 1 — a} .

JEA

Given the indices R, (j) for the order statistics T, (;), define

(1 — a)—quantiles

Cn(j) = c{Bn(1),..., Bn(j — 1)}, Qo @)
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and test statistics

o= Ty G-y > Celi —1)
n,(j) — :
—00,  otherwise

Let

" =min(j : T, ;) = 00)
be the number of test-statistics which are not set to —oo. The
step-down maxT multiple testing procedure for controlling the

GFWER= P(V,, > k) at level « is defined by

Reject Ho g, (j) if T, ;) > Cn(9), j=1,....m

and also reject {Hy g, +), Ho.r, 1*+1)s - - - Ho, R, (1* +k—1) } -

Remark. Note that this procedure is nothing else than first
carrying out the Step-down procedure for controlling FWE and
subsequently rejecting the next k in the ordered list of
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test-statistics. Let V(1) be the number of False-positives for the
procedure 2 controlling FWE, and V,,(k) be the number of false
positives for Procedure 4 controlling GFWE.. Since the set of
rejections for the above procedure equals the union of the set of
rejections for Procedure 2 controlling FWE and another £
rejections, we have that V,,(k) <V, (1) 4+ k. Since
limsup,, ., P(V,(1) > 0) < «, it follows that the above procedure
satisfies

limsup P(V,,(k) > k) < a.

n—oo

In addition, if limsup,, . P(V,(1) > 0) = «, then we have

limsup P(V,,(k) = k) =1 — «.

n—oo

That is, with probabilty tending to 1-«, this procedure will select
precisely k false positives. This gives us the following theorem. This
procedure and theorem immedidately generalizes to a step-down

procedure based on minima of p-values controlling GFWER.
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Theorem for Procedure 4 controlling GFWER: Given a null
distribution Q¢ and a € (0,1), denote the number of Type I errors

for Procedure 4 by

" +k—1
Vi (k) = Z I(R,(j) € Sy).

Suppose Assumptions A1T and A2T on the test statistics T},(j) and
null distribution ()¢ hold. Then, Procedure 4 provides asymptotic

control of the generalized family-wise error rate at level «a, that is,

If

limsup Pr(V,, (k) > k) < a.

n—aoo

18

) in Assumption A1T holds with equality, then asymptotic

control is exact:

lim Pr(V,(k) > k) = «,

n—aoo
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and, in fact, in that case, we have

lim Pr(V,(k)=k)=1-q.

n—oo
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Asymptotic Control for Consistent Estimator Null Distributio

If Qo,, is a consistent estimator of Qq, then the corollary below
shows that procedures based on estimated cut-offs C (7) also
provide asymptotic control of the Type I error rate. We state the
Corollary for the step-down procedure based on maxima of test
statistics (Procedure 2), but the same result applies to the general

single-step procedure (Procedure 1) and the step-down procedure

based on minima of p-values (Procedure 3).
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Corollary: Let Qon be such that, given the empirical distribution
P, of X1,...,X,, it converges pointwise (i.e., converges weakly) to
a limit distribution )y with continuous and strictly increasing
marginal cumulative distribution functions Qg;, 7 = 1,...,m. This
implies that, conditional on P,,,

A y n - A — U. y
Ag%é}imﬂc( , Qon, ) — (A, Qp, ) |[— 0 (28)

Denote the number of Type I errors for Procedure 2 based on the

estimator QOn by

EZ " 5y > Cnld), Rulj) € So).

Then, the family-wise error rate is controlled asymptotically at

level «

A

limsup Pr(V, > 1) < a.

n—aoo
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) in Assumption A1l holds with equality, asymptotic control is

lim Pr(V, >1) = .

n—oo
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Bootstrap Estimator of the Null Distribution

The asymptotic null distribution Qg = Qo (P) can be estimated
with the non-parametric or model-based bootstrap. Let P, denote
an estimator of the true data generating distribution P. For the
non-parametric bootstrap, P, is simply the empirical distribution
P,,, that is, samples of size n are drawn at random with replacement

from the observed X;,...,X,,. For the model-based bootstrap, P,

is based on a model M, such as the m-variate normal distribution.

Each bootstrap sample consists of n i.i.d. realizations X 1# o, X
of a random variable X# ~ P,. Denote test statistics computed
from bootstrap samples by 77 . The proposed null distribution Q

from Theorems can be estimated by the distribution @on of

2 () = 90n(5) (T () + 00(5) — Bp, Tu*(5) ).
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. . T0(J)
Uon(j) = min | 1, : ,
( VaT]sn [Tn#(])]>
Under regularity conditions, the bootstrap is known to be
consistent, in the sense that Z# =p 4 ~ (o conditional on ]5n

In practice, one can only approximate the distribution of Z# by an

empirical distribution over B bootstrap samples drawn from F,,.
That is, the estimator QOn is the empirical distribution of Z?,
where Z° corresponds to the test statistics for the bth bootstrap
sample, b=1,...,B.

For procedures based on maxima of the test statistics T,
(Procedure 2), the quantiles ¢(A, Qon, «) are simply the quantiles
of max;¢ 4 Z%(j) over the B bootstrap samples, that is,
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c(A, Qon, «) is such that

c(A, Qon,a) — inf {c L5

Resampling-based procedures for minima of p-values (Procedure 3)
are more complex, as one must first estimate p-values

P,(j) = Pro,(Z(j) > Tn(4)) using Qo,, before considering the
distribution of their successive minima. Unadjusted p-values P, (j)

are estimated by

B

The reader is referred to 7 for a fast algorithm for resampling
estimation of adjusted p-values for step-down procedures based on

minima of p-values.
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Example: t-statistics for single parameter hypotheses

Consider testing m single parameter null hypotheses of the form
Ho; : p(g) < po(j) against alternative hypotheses

Hyj:p(g) > po(g), where pu(5) = pu(j | P) is a real-valued
parameter, 7 = 1,...,m. Then, the set of true null hypotheses can
be represented as Sy = {j : u(j) < po(4)}-

Let p,(j) be an asymptotically linear estimator of u(j), with
influence curve IC;(X | P), that is,

i) = 1) = = ST | P op(1/v), (30)

where E[IC;(X | P)] =0 and
IC(X | P)=({C;(X|P):j=1,...,m) denotes the

m-dimensional vector influence curve. Let

(i) = po(5)

T.(j) = vn on ()
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be the standardized test statistic, or ¢-statistics, for the null

hypothesis Hy;, where 0,,(j) is a consistent estimator of
o(j) = E[IC;(X | P)?], j =1,...,m. Large values of T, (j) provide

evidence against Hoy; : pu(j) < po(j). Let
T, =(Tn(j):j=1,...,m) be the corresponding m-vector of test
statistics, with joint distribution @, = Q,(P).
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Choice of null distribution @)

The test statistics T, = (T,(j) : j = 1,...,m) satisfy Assumptions
A1T and A2T and Assumptions A1P and A2P, where the null
distribution Q¢ = Qo (P) is the m-variate normal distribution with
mean zero and covariance matrix p(P), the correlation matrix of
the vector influence curve IC(X | P). Thus, step-down Procedures
2 and 3, based on 7,, and the null distribution (g, provide
asymptotic control of the FWER for the test of single-parameter

null hypotheses of the form Hy; : 1(j5) < po(j) against alternative
hypotheses Hy; : pu(5) > po(4), 5 =1,...,m.
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Correspondence with explicit construction

The above theorems involve a null distribution )y that was derived

specifically in terms of the statistics u, in equation (31)). It turns

out that, under mild regularity conditions, this null distribution (g
corresponds to the general proposal Jf defined as the asymptotic
distribution of m-vectors Z*, where

Z3(5) = vou () (T ) + 60(4) = ETu(5)),  G=1,....m.

The proposal above for the null distribution is defined simply as

the asymptotic distribution of m-vectors Z,,, where

2ty — tinti) = 1)
" on(J)

With 6p(j) = 0 and 79(j) = 1, one can show that Z* and Z,, have

the same asymptotic joint distribution, that is ()g and Q) coincide.

: 7=1,...,m.
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Example: Tests of means

A familiar testing problem that falls within this framework is that
where X1,...,X,, are n i.1.d. random m-vectors, X ~ P, and the
parameter of interest is the mean vector
p=uwP)=W;=p|P):j=1,...,m)=FEX. Null hypotheses
Hoy; - p(g) < po(y) then refer to individual components of the mean
vector u and the test statistics T;,(j) are the usual one sample
t-statistics, where p,(7) = X, (j) = = >, X;(j) and

o2(j) = = > .(Xi(j) — Xn(4))? are empirical means and variances

for the m components, respectively.
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Example: Tests of correlations

Another common testing problem covered by this framework is that
where the parameter of interest in the correlation matrix

p = p(P) = (pjr(P)) for the random vectors in the previous
example, p;r = pjx(P) = Cor(X;, Xx), j,k=1,...,m. Suppose we
are interested in testing the m(m — 1)/2 null hypotheses that the m
components of X are uncorrelated, Hj; : pjr =0, 7 =1,...,m,
k=45+1,...,m. Common test statistics for this problem are

T.(jk) = \/nr;i, where r;; are the sample correlations.

As discussed in Westfall and Young (1993), Example 2.2, p. 43,
subset pivotality fails for this testing problem. To see this, consider

the simple case m = 3 and assume Hi5 and H;3 are true, so that
p12 = p13 = 0. Then the joint distribution of (742, Th3) is
asymptotically normal with mean vector zero, variance 1, and
correlation po3, and thus depends on the truth or falsity of the
third hypothesis Ho3. In other words, the asymptotic covariance of
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the vector influence curve for the sample correlations is not the

same under the true P as it is under a null distribution F, for
which pjr, =0 V5 # k.

However, our proposed null distribution )y (and bootstrap
estimator thereof) for the test statistics T,, does control the Type I
error rate when used in Procedures 1, 2, and 3. Tests of
correlations thus provide an example where standard procedures
based on subset pivotality fail, while procedures based on our

general null distribution ()¢ achieve the desired control.
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F'-statistics for multiple parameter hypotheses

Consider random m-vectors Xp ~ P, k=1,..., K, from K
different populations with data generating distributions P, ***,
Denote the mean vector and covariance matrix in population £ by
ur = E X and Xy, respectively. We are interested in testing the m
null hypotheses Hy; : ui(7) = n(g) vk, that, for each population,
the jth components pg(j) of the mean vectors are equal to a
common value u(j), 7 =1,...,m. As before, let Sy denote the set
of true null hypotheses. Suppose, we observe i.i.d. samples

Xk, Xkon,, of size ng from population £, £ =1,..., K. Let

n = ), ni denote the total sample size and dy,, = ng/n the

proportion of observations from population k£ in the sample, where
it is assumed that, Vk, 0x ., — 0x > 0 as n — oo.
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As test statistics we can use the well-known F'-statistics

L Y E 1) 5 m(Xe () — X(5))°
1/(n—K)> 2, o(Xki(d) — Xi(4))?

=1,...,m,

(32)
where X}, denotes the sample mean vector for population k& and
X = >k 5k,nX' . denotes the overall mean vector.
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Choice of null distribution @)

Theorem: The F-statistics T;, = (1,(j) : j = 1,...,m) satisfy
Assumptions A1T and A2T of Theorem 7?7 and Assumptions A1P
and A2P of Theorem ?7?, where the null distribution Qg = Qo (P) is
the joint distribution of the random m-vector Z = f(Z1,...,ZKk),
defined in terms of independent Gaussian m-vectors Zj ~ N (0, ¥x)
and a quadratic function f specified below. Thus, step-down
Procedures 2 and 3, based on T;, and the null distribution (),
provide asymptotic control of the FWER for the test of multiple

parameter null hypotheses Ho; : ux(j) = p(j) vk, j=1,...,m.
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Proof of Theorem

Firstly, note that the denominators of the F'-statistics can be

written as

D, (j ' 7=1,....m,

where 67 (j) are consistent estimators of the population variances

0%(7), i.e., of the diagonal elements of covariance matrices Yy,
k=1,...,K. Thus, as n — oo,

D, (j) =p D(j) Zékak j=1,...,m.

The numerator of the F-statistics T,,(j) can be rewritten as

(1_5kn an Z\/ékn(slnzln

1k
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where Zj , = Vhe(Xy — ), k=1,..., K. Thus, the m-vector
T, =(Tn(j):7=1,...,m) of F-statistics can be approximated by

a random m-vector Z,, that is a simple quadratic function
f(Zl,n, . ZK,n) = (fj(Zl,n7 v o ey ZK,n) . ] = 1, ce ,m) of the K
independent m-vectors Zj ,, k=1,..., K,

AL

Tn(]) ~ :Zn(j):fj(Zl,na-”aZK,n)a

By the Central Limit Theorem,

(Zk:,n(.]) D] € S()) =D (Zk<j) 1] € S()), where Z;, ~ N(O,Ek>,

k= 1,...,K. FOI‘j %So,

Zin () = /AR(Xk(G) — (7)) + k(i () — () converge to
either +00 or —oo for some k. Applying the Continuous Mapping
Theorem to the function (f;(Zin,...,ZKkn) 1 j € So) proves that

(T, () : j € Sy) converges in distribution to (Z(j) : j € Sy), where
Z = f(Z1,...,7Zk) and the Zj are independent m-vectors with
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Zr ~ N(0,X), k=1,..., K. That is, the limit distribution of
(T.(j) : 7 € Sp) is directly implied by the multivariate normal
distributions N (0,Y), where ¥ denotes the m x m covariance
matrix of Xy ~ Py, k=1,..., K. For j ¢ Sy, T,,(j) — oo.

Therefore, the F'-statistics T, satisfy Assumptions A1T and A2T,
where the null distribution Q¢ = Qo(P) is the joint distribution of

the random m-vector Z = f(Z1,..., Zk), for independent
m-vectors Zy ~ N(0,Y;) and the quadratic function f defined in

equation (33). In Assumption A2T, M; = oo, and condition (19) in

Assumption A1T follows immediately by continuity of (J¢. For this
definition of )y, Assumptions A1P and A2P are also satisfied.
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Explicit Null Distribution for F-test Statistics
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The nonparametric mixture model for test-statistics

Let T7', ..., T be m independent and identically distributed test
statistics for null hypotheses Hy ;, j = 1,...,m, with density being
a mixture of a known null density fo, and unknown density fi,
with unknown mixing proportion pg:

T]n ~ fn = pOfO,n + (1 —p())fl’n.

Let F),, Fon, I1 n be the corresponding cdf’s.

Remark: A more common situation is that the finite sample null
distribution Fp , can be consistently estimated with an estimator
Fy ., in the sense that

F(),n—F() — 0
FO,n_FO — 0,

where F{y denotes a limit null distribution. In this case, one

replaces the null distribution Fp ,, by its estimate Fo,n-
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Equivalently, let B; ~ Bernoulli(1 — pg) be the hidden label, T7",
given Bj, has density fp, », the full data are m i.i.d copies (B}, T]”),

j=1,...,p, but we only observe the test-statistics 7;". Here
B; =1—1(Hy , is true) indicates if the null-hypothesis Hy_; is true.

Let (B,T"™) denote the random variables described by:
B ~ Bernoulli(pp), and T, given B, has density fp .
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A pproximate correspondence between frequentist independencg
and nonparametric mixture model

Frequentist independence model for test-statistics: Suppose
that it is known that the test-statistics are independent, that all
the marginal distributions of test statistics corresponding with a
true null hypothesis Hp ; equal a common known distribution Fg ,,,

but that distributions Fj ., of T}, are unknown otherwise.

Let So ={j : Fjn = Fon} be the set of true nulls. Let

po =| So | /m. Let Fi, be the distribution of the mixture of F} ,,
J € 5§, with uniform mixing distribution. For a dominating
measure p, let fo, = dFy,/du, and fi, = dFy,/dp.
Approximate correspondence: Consider a parameter (such as
FDR of the set {j : T]* > t}) of the distribution of T™ under the
independence model which only depends on the m-marginal
distributions Fj , through pg, Fp y, F1 . Then this parameter has

Page 98



approximately the same value under this independence distribution
as under the corresponding mixture model distribution defined by
Bj ~ Bernoulli(po), T}* ~ fB; n, j = 1,...,p. Therefore, the
mixture model provides a convenient working model to find the
right cut-off ¢(a) so that the FDR of the set {j : TT" > ¢} equals a.

For example, it can be verified that

EIND Z;nzl I(T]n > t,j -~ S()) B EMIXT Z;nzl I(Tjn > 1, Bj = O)
EIND Z;nzl ](Tjn > t) EMIXT Z;nzl ](Tjn > t) ’

where E;np denotes the expectation under the distribution of fn
in the frequentist independence model identified by So, Fon, Fin,

7 ¢ Sp, and EyrxT denotes the expectation under the distribution
of (T}, B,) in the i.i.d. mixture model identified by po =| Sy | /m,
Fin, = sumjgs, Fin/ | S§ |, and Fpy,.
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It remains to be seen till what degree we have:

> LT >, € Sp) > I(Th >t,B; =0
ErnD ~ Enrxr

Z] I(TF > 1)

Z] I(TF > 1)

One fundamental difference between the two (with each other)
corresponding distributions is that under the frequentist model

| So | is fixed, while » . I(B; = 0) is random with mean | So |. To
obtain a stronger similarity one could enforce in the mixture model
the constraint that » ; I(B; = 0) =[ Sp |. The effect of this
additional constraint on our calculations in the mixture model

might need to be investigated.
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Finite Sample Identifiability in nonparametric mixture model

Given the actual density f,, of the test-statisics and the null density
fo.n, the proportion of true nulls pg and the alternative density f; ,
are identified up till:

fn®) . Fn(t)>

0 < pg<min (min , in
’ t fon(t) t Fon(l)
fn o

fl,n

Parameter of interest in nonparametric mixture model.

fO,n(t>
Po 1)
FO,TL(t)
Fo(t)

P(B=0|T">t)=p

John Storey refers to ®,(77") as g-v