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Notation and Basic Setup

We will assume that O1, ..., On ∼ P i.i.d.

Pn is the empirical distribution.

Pf means Epf(O) =
∫
fdP , likewise Pnf =

∫
fdPn.

F will represent a set of real-valued functions f whose domain is the space of Oi.

l∞(F) is the normed space of mappings from F to R. If G ∈ l∞(F), the norm is
defined by ‖G‖F = supf∈F | G(f) |<∞.

If P | f |<∞ for all f ∈ F , then Gn ≡
√
n(Pn − P ) is a random member of l∞(F), so

it is a random mapping from F to R. It is defined by Gn(f) =
√
n(Pnf − Pf). Note

that it is the randomness of the empirical distribution Pn that makes Gn a random
element of l∞(F).

G is said to be a P -Brownian Bridge if it is a random element of l∞(F) that is con-
tinuous with probability one, such that (G(f1), ..., G(fk) is multivariate Normal with
mean zero and Cov(G(fi), G(fj)) = CovP (fi(O), fj(O)) for any k members of F . Note
that continuity is with respect to the norm of l∞ defined earlier, so G is continuous at
f0 ∈ F if for every ε > 0 there exists δ > 0 such that if f ∈ F , ‖f − f0‖∞ < δ, then
‖G(f)−G(f0)‖ < ε.

Glivenko-Cantelli Classes

When F is a finite class of functions in L1(P ), it is clear from the law of large numbers
that ‖Pn − P‖F → 0 almost surely. Whenever this property holds for a class F , we
call F a P-Glivenko-Cantelli class . However, not all classes of functions are Glivenko-
Cantelli. Consider F being the class of all real-valued functions bounded between zero
and one. Then for each n, there exists a (random) fn ∈ F such that fn = 1(O1, ..., On)
so that Pnfn = 1, but we could have Pfn = 0 if P is a continuous distribution. Thus
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‖Pn − P‖F ≥ 1 for all n, so F is not Glivenko-Cantelli. Basically, the larger the class
F , the harder it is for F to be Glivenko-Cantelli.

This leads to the first major goal of empirical process theory: Determine sufficient
conditions for F to be Glivenko-Cantelli that are as easy to check as possible, but
apply to as large a class F as possible.

Convergence in Distribution

Note that the Glivenko-Cantelli property can be thought of as a uniform law of large
numbers over F . Once we have established a uniform law of large numbers, we might
also wonder if we can establish a uniform version of the Central Limit Theorem, but
first we have to talk about what that could even mean.

For a single random variable f(O) ∈ L2(P ), the Central Limit Theorem teaches us
that

√
n( 1

n

∑
f(Oi) − EPf) =⇒ N(0, varP (f)), but what does it mean for this to

hold uniformly over F . In empirical process theory, we are interested in showing that
Gn =⇒ G in (l∞(F), ‖ · ‖F), which says that the empirical process converges to the
P -Brownian Bridge, when both are viewed as random functions from F to R.

A naive way of defining convergence in distribution would be to say that Gn =⇒ G
if the finite-dimensional distributions (Gn(f1), ..., Gn(fk)) converged in distribution to
(G(f1), ..., G(fk)) for all (f1, ..., fk) ∈ F . However, there are many properties of a ran-
dom function that are not determined by its finite dimensional distributions, so this
naive definition is insufficient. Instead, we define convergence in distribution as follows,
in a way that generalizes the usual definition for real-valued random variables.

Definition: If Xn, X are random elements of a normed space (D, ‖ · ‖), we say that Xn

converges in distribution to X (denoted Xn =⇒ X) if for every bounded continuous
function g from (D, ‖ · ‖) to R, E[g(Xn)] → E[g(X)].

Donsker Classes

If the empirical processGn converges in distribution in (l∞(F), ‖·‖F) to the P -Brownian
Bridge G, we say that F is a P-Donsker class. Because the finite dimensional distribu-
tions of G are multivariate Normal, saying that F is Donsker is saying that the CLT
holds uniformly over F . Note that all Donsker classes are Glivenko-Cantelli classes, but
the converse is not true (consider the function class to be a single function f ∈ L1(P )
but f /∈ L2(P )). As with Glivenko-Cantelli classes, F can only be Donsker if the class
is not too big. This leads to the second major goal of empirical process theory: Deter-
mine sufficient conditions for F to be Donsker that are as easy to check as possible,
but apply to as large a class F as possible.

In general, we will not be very concerned with establishing that classes of func-
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tions are Glivenko-Cantelli or Donsker. For us, empirical process theory will be
a means to an end, but we should mention that the class of indicator functions
F ≡ {1((−∞, t]) : t ∈ R} is a Donsker class.

Measure Theory Detail

When working with real-valued random variables, measurability issues can often be
completely ignored, as the construction of subsets of R that are non-Borel measurable
usually requires cavilling with the Axiom of Choice. Unfortunately, this is not the case
when working with random functions.

If Gn =⇒ G, we need from the definition of weak convergence that E[g(Gn)] con-
verges to E[g(G)] for bounded continuous g mapping (l∞(F), ‖ · ‖F) to R. But to
even talk about E[g(Gn)] according to the usual definition of expectation, we need for
g(Gn) to be a Borel measurable function. If O1, ..., On are defined on a probability
space (Ω,B, P ), where B denotes the Borel subsets, it is possible to find B ∈ B and
bounded continuous g such that {ω : g(Gn)(ω) ∈ B} /∈ B, so that g(Gn) is non- Borel
measurable.

We can circumvent this technical difficulty by defining the outer expectation as E?g =
inf{Ef : f ≥ g is measurable}. So technically, Xn ∈ (D, ‖ · ‖) converges in distribution
to X ∈ (D, ‖ · ‖) if for all bounded continuous g mapping (D, ‖ · ‖) to R, E?[g(Xn)]
converges to E[g(X)]. However, this and other measurability details will be ignored in
subsequent lectures.

An application of empirical process results to simul-

taneous confidence bands.

Result 0.1. Let Gn,P ∈ `∞(F) be an empirical process indexed by a class of func-

tions F . Suppose that F is a Donsker class: that is, Gn,P
D

=⇒GP in `∞(F), where GP

is the Gaussian process defined by its finite dimensional distributions being multivari-
ate normal with covariance implied by pairwise covariances COV(GP (f1), GP (f2)) =
COVP (f1(O), f2(O)). Let q0.95,P be the 0.95-quantile of ‖GP‖F ≡ supf∈F | G(f) |.
Then

Pr(Pf ∈ Pnf ± q0.95,P/
√
n for all f ∈ F) → 0.95. (1)

To obtain the nicest type simultaneous confidence band (that is, a band which is
wide were the estimator Pnf is highly variable, and small at f where the estimator
Pnf is precise) one would choose F so that VARP (f(O)) = σ2 does not depend on the
choice f ∈ F . For example, given a class F0, one would define

F ≡ {f/σ(f) : f ∈ F0},

where σ2(f) ≡ VARPf(O). An interesting question for empirical process theory is if
the fact that F0 is Donsker, implies that F is Donsker. Clearly, if inff∈F0 σ

2(f) > 0,
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then the answer is yes, but, if σ(f) can approximate zero arbitrarily close so that
functions f/σ(f) can become unbounded (but finite variance), then we will probably
need some condition,.
Proof: Consider the function g : `∞(F) → IR defined by g(G) ≡ ‖G‖F = supf∈F |
G(f) |. This function is continuous. Since Gn,P

D
=⇒GP in `∞(F), the continuous

mapping theorem teaches us that g(Gn,P )
D

=⇒g(GP ). Since q0.95,P is a continuity point
of the limit distribution g(GP ), weak convergence implies that

Pr(sup
f∈F

| Gn,P (f) |≤ q0.95,P ) → Pr(sup
f∈F

| GP (f) |≤ q0.95,P ) = 0.95.

Since the left-hand side equals (1), this completes the proof.

Result 0.2. Let Gn,Pn ∈ `∞(F) be the empirical process indexed by a class of functions
F corresponding with sampling from the empirical distribution Pn. Suppose that F is a

Donsker class so that Gn,Pn

D
=⇒GP , conditional on almost every data realization (Pn :

n ≥ 1) (van der Vaart, Wellner, 1996). Let qn,0.95 be the 0.95-quantile of ‖Gn,Pn‖F .
Then qn,0.95 → q0.95,P , and thus (by the previous result)

Pr(Pf ∈ Pnf ± qn,0.95/
√
n for all f ∈ F) → 0.95. (2)

Proof. We have
0.95 = Pr(‖Gn,Pn‖F ≤ qn,0.95). (3)

By the continuous mapping theorem, we have ‖Gn,Pn‖F
D

=⇒‖GP‖F a.e. Since pointwise
convergence of cumulative distribution functions to a continuous cumulative distribu-
tion function implies uniform convergence, this implies that the cumulative distribu-
tion function of ‖Gn,Pn‖F converges uniformly to the cumulative distribution function
of ‖GP‖F . Thus,

Pr(‖Gn,Pn‖F ≤ qn,0.95)− Pr(‖GP‖F ≤ qn,0.95) → 0,

for n→∞. Combining this with (3) yields

Pr(‖GP‖F ≤ qn,0.95) → 0.95.

Finally, taking the inverse of the cdf of ‖GP‖F on both sides yields the wished conver-
gence of qn,0.95 to q0.95,P a.e. This completes the proof.

References

See Weak Convergence and Empirical Processes by van der Vaart and Wellner. Older
empirical process references include books by Pollard and Billingsley.
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Almost Sure Representation Theorem

Theorem 0.1. Suppose that Xn converges to X in distribution in a normed space
(D, ‖ · ‖), where X is Borel measurable and separable with probability one. Then there
exist Yn, Y ∈ (D, ‖ ·‖) such that Xn equals Yn in distribution (so Eg(Xn) = Eg(Yn) for
any bounded continuous real-valued g), X equals Y in distribution and Yn → Y almost
surely (meaning ‖Yn − Y ‖ → 0 almost surely).

Here the separability of X means that with probability one, there exists a countable
subset {d1, d2, ..} of D such that for any Borel measurable compact subset D0 of D,
P (X ∈ D0) = P (X ∈ D0 ∩{d1, d2, ...}). When (D, ‖ · ‖) = (l∞(F), ‖ · ‖F) and X is the
P -Brownian Bridge G, this condition is satisfied because G is defined to be continuous.
Here, the Borel sigma field just denotes the sigma field generated by the open subsets
of (D, ‖ · ‖).

Continuous Mapping Theorem

Theorem 0.2. Suppose that Xn converges to X in distribution in a normed space
(D, ‖ · ‖), where X is Borel measurable and separable with probability one, and H is a
continuous mapping from (D, ‖ · ‖) to another normed space (E, ‖ · ‖). Then H(Xn)
converges in distribution to H(X).

proof: Let g be a bounded continuous mapping from (E, ‖ · ‖) to R. By the a.s.
representation theorem, there exists Yn =d Xn, Y =d X such that Yn → Y a.s. Hence,
H(Yn) → H(Y ) almost surely because H is continuous. Hence, g(H(Yn)) → g(H(Y ))
almost surely because g is continuous. As g is bounded, the bounded convergence
theorem tells us that E[g(H(Xn))] = E[g(H(Yn))] → E[g(H(Y ))] = E[g(H(X))], and
the result follows from the definition of convergence in distribution. �

Note that the method used in this proof shows that almost sure convergence always
implies convergence in distribution. See the class notes for a more powerful version of
this theorem, called the extended continuous mapping theorem.

The continuous mapping theorem has many important applications. In particular,
it can be invoked to show convergence in distribution for real-valued continuous func-
tionals of the empirical process Gn. Usually we only care such functionals, rather than
the behavior of the entire random function Gn in l∞(F), and empirical process theory
provides an elegant tool for answering questions of statistical interest.

For example, consider the class of indicator functions F = {1((−∞, t]) : t ∈ R}, and
define H : l∞(F) → R by H(X) = ‖X‖F . Clearly H is continuous on (l∞(F), ‖ · ‖F),
so the continuous mapping theorem tells us that H(Gn) converges in distribution to
H(G), for G the P -Brownian Bridge. Kolmogorov found the distribution of H(G)
analytically, and the quantiles of this distribution can be used to form asymptotically
valid confidence bands for the cumulative distribution function of P .
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The Ordinary Delta Method

Recall that if Xn is a real valued random variable and µ a constant such that
√
n(Xn−

µ) =⇒ N(0, σ2), and φ is a real-valued function with a continuous derivative, that√
n(φ(Xn) − φ(µ)) =⇒ N(0, [φ′(µ)]2σ2). This idea can be generalized to find the

limiting distribution of
√
n(φ(Pn)−φ(P )), when φ is a functional of probability distri-

butions, so that φ(Pn) is an estimator of a parameter φ(P ). But in order to state the
formal result, we first have to discuss differentiation in general spaces.

Functional Derivatives

If φ : R→ R, it is easy to define what is meant by φ being differentiable at a point. If
φ : (l∞, ‖ · ‖F) → R, or more generally, φ : (D, ‖ · ‖) → (E, ‖ · ‖), obviously the usual
definition of differentiability does not apply.

A heuristic is that if φ : (D, ‖ · ‖) → (E, ‖ · ‖) is differentiable at P ∈ D, then the
derivative of φ at P (denoted dφP ) is a continuous linear map dφP : (D, ‖·‖) → (E, ‖·‖)
that is a linear approximation to φ at P .

Unfortunately, there is ambiguity about how to define a derivative map between gen-
eral spaces. The three most important types of derivatives are listed below.

Definitions: If there is a continuous linear map dφP : (D, ‖ · ‖) → (E, ‖ · ‖) such
that Rem(h) = ‖φ(P +h)−φ(P )−dφP (h)‖ for h ∈ D, then φ is (Gateaux, Hadamard,
Frechet) differentiable at P if Rem(εh)/ε→ 0 uniformly over h for h in any (singleton
of D, compact subset of D, bounded subset of D) respectively.

Note that Frechet differentiability is stronger than Hadamard differentiability, which
is stronger than Gateaux differentiability. If the Frechet derivative exists, it is equal
to the Hadamard derivative, and if the Hadamard derivative exists, it is equal to the
Gateaux derivative.

Note that for φ : Rk → R, the Gateaux derivative corresponds to the directional
derivative, and the Frechet and Hadamard conicide and are equal to the total deriva-
tive. When k = 1, all three derivatives are the same, and coincide with the ordinary
definition of a derivative. This is because the Gateaux derivative at x in the direction
h is given by d

dε
φ(x + εh) |ε=0= φ′(x)h. Thus, dφx is the linear map map h → φ′(x)h.

But when k > 1, it is possible for the directional derivative to be defined in every
direction, but for the total derivative to not exist.

Note that the derivative depends on what norm is chosen for both spaces D and E.
Generally a strong norm in D and a weak norm in E makes it easier for the derivative
to exist.
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The Hadamard derivative is thought to be the most useful in empirical process the-
ory, as Frechet differentiability is too hard to establish in many cases, but Gateaux
differentiability is not strong enough to imply desired results. Because the Hadamard
derivative is so useful, it is convenient to rephrase Hadamard differentiability in another
form.

Theorem 0.3. A map φ : (D, ‖ · ‖) → (E, ‖ · ‖) is Hadamard differentiable at P ∈ D
with derivative dφP : (D, ‖ · ‖) → (E, ‖ · ‖) if dφP is a continuous linear map such that
φ(P+tnhn)−φ(P )

tn
→ dφP (h) for all scalar sequences tn → 0 and hn ∈ D → h ∈ D.

Often we are interested in functionals defined on a space of probability distributions,
so that φ(P ) is an unknown parameter and φ(Pn) is an estimator. But notice that the
definition of the derivative requires specifying a normed space. So what normed space
should we choose to include all probability distributions? Should we think of P and Pn
as members of (l∞(F), ‖ · ‖F)? If so, for what F? One common choice is to think of P
and Pn as distribution functions (which are monotone right-continuous functions with
left limits) and define the domain D of φ to be the space of cadlag functions. Cadlag
is a french acronym for continuous from the right with limits from the left, and as the
name implies, it is the space of all real-valued right-continuous functions with left lim-
its. The most common norm used for the space of cadlag functions is the supremum
norm.

Once differentiability has been established (any of the three kinds), actually finding
the derivative is easy, because dφP (h) = d

dε
φ(P + εh) |ε=0. The right side is just the

derivative of a real-valued function of ε, evaluated at zero, so it can often be found
using high school calculus.

Example: Consider φ defined on the space of cadlag functions with supremum norm,
by φ(F ) =

∫ t

0
1

1−F (s−)
dF (s). This is an important functional in survival analysis, repre-

sents the cumulative hazard when O ∼ P , and F is the cumulative distribution function
of P . Evaluating d

dε
φ(P + εh) |ε=0 we see that the Gateaux derivative at F in the di-

rection h is given by dφF (h) =
∫ t

0
1

1−F (s−)
dh(s) +

∫ t

0
h(s−)

(1−F (s−))2
dF (s). The Hadamard

derivative of the cumulative hazard function will be important later when we analyze
the well-known Kaplan-Meier estimator.

Finally, there is a generalization of the well-known chain rule for Hadamard differ-
entiation.

Theorem 0.4. Suppose φ : D → E has Hadamard derivative dφP at P ∈ D and
that ψ : E → F has Hadamard derivative dψφ(P ) at φ(P ) ∈ E. Then the composition
ψ(φ) : D → F has Hadamard derivative dψφ(P )(dψP ) at P .

proof: Consider a scalar sequence tn → 0. For hn ∈ D → h, kn ≡ φ(P+tnhn)−φ(P )
tn

→
dφP (h), by the Hadamard differentiability of φ at P . Hence, ψ(φ(P+tnhn))−ψ(φ(P ))

tn
=

ψ(φ(P )+tnkn)−ψ(φ(P ))
tn

→ dψφ(P )(dφP (h)) by the Hadamard differentiability of ψ at φ(P ),
thus proving the desired result. �
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We now state the main result, which is called the functional delta method.

Theorem 0.5. For D and E normed spaces, suppose φ : D → E has Hadamard
derivative dφP at P ∈ D, and that for Xn, X ∈ D,

√
n(Xn − P ) =⇒ X. If X

is Borel measurable and separable, then
√
n(φ(Xn) − φ(P )) =⇒ dφP (X). Further,

‖
√
n(φ(Xn) − φ(P )) − dφP (

√
n(Xn − P ))‖ converges in distribution (so also in outer

probability) to zero.

proof: Taken from page 374 of van der Vaart and Wellner. By the almost sure
representation theorem, there exist Yn =d

√
n(Xn − P ), Y =d X such that ‖Yn −

Y ‖ → 0 almost surely. Thus
√
n(φ(Xn) − φ(P )) =d

φ(P+Yn/
√
n)−φ(P )

1/
√
n

→a.s. dφP (Y ) =d

dφ(X), by the Hadamard differentiability of φ, using 1/
√
n in place of tn. This

proves the first part. The second part follows by considering the map ψ : D →
(E,E) defined by ψ(d) = (φ(d), dφP (d)), with Hadamard derivative (dφP , dφP ). From
this Hadamard differentiability, it follows that (

√
n(φ(Xn) − φ(P )),

√
n(dφP (Xn) −

dφP (P )) =⇒ (dφP (X), dφP (X)), and then apply the continuous mapping theorem to
the difference of the two coordinates. �

Basics of convergence in Distribution

Review of probabilistic big-oh, little-oh notation: Recall that for random variables
An, Bn taking values in a normed space, An = oP (Bn) means that ‖An‖/‖Bn‖ con-
verges to zero in probability under P . So An = oP (n−1/2) means that

√
n‖An‖ con-

verges to zero in probability under P . An is said to be bounded in probability (denoted
An = OP (1)) if for all ε > 0 there exists M < ∞ such that P (‖An‖ > M) ≤ ε.
An = OP (Bn) means that ‖An‖/‖Bn‖ = OP (1). Some helpful rules to keep in mind
are that OP (1)oP (1) = oP (1) and that OP (1) + op(1) = OP (1).

One important result for proving convergence in distribution is Slutsky’s Theorem.
Suppose that a scalar sequence an converges in probability to a, a sequence bn in a
metric space (D, ‖ · ‖) converges to a constant value in (D, ‖ · ‖) and Xn ∈ (D, ‖ · ‖)
converges in distribution to separable X ∈ (D, ‖ · ‖). Slutsky’s Theorem states that
anXn + bn converges in distribution to aX + b.

Influence Curves

Definition: For O1, ..., On ∼ P i.i.d., φn = φn(O1, ..., On) is said to an asymptotically
linear estimator of φ(P ) ∈ Rk with influence curve IC(O|P ) ∈ Rk if EP IC(O|P ) = 0,
EP‖IC(O|P )‖2

2 <∞, and φn = φ(P ) + 1
n

∑n
i=1 IC(Oi|P ) + oP (n−1/2).

Note: The influence curve depends on the unknown P , so it is not a statistic.

If φn is asymptotically linear for φ(P ), the CLT tells us that
√
n(φn−φ(P ) =⇒ N(0,ΣP )
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under P , where ΣP = EP [IC(O|P )IC(O|P )T ]. If we can consistently estimate ΣP from
the data (often with the empirical estimator 1

n

∑n
i=1 IC(Oi | Pn)IC(Oi | Pn)T ), then

we can form asymptotically valid confidence regions for φ(P ). This is why asymptotic
linearity is considered a stronger and more desirable property that

√
n-consistency

(‖φn − φ(P )‖ = OP (n−1/2)).

Examples

If Oi ∈ R, and EP |Oi| <∞, then the sample mean is asymptotically linear for EP (O)
with influence curve IC(O|P ) = O −EP (O). Likewise, the empirical distribution at a
fixed point t ( 1

n

∑n
i=1 1(Oi ≤ t)) is asymptotically linear for P (O ≤ t) with influence

curve IC(O|P ) = 1(O ≤ t) − P (O ≤ t). In both of these examples, there is no
remainder (the oP (n−1/2 term). The heuristic of asymptotic linearity is that up to an
oP (n−1/2) term, the estimator behaves like a sample mean.

Sample Median

This example is slightly harder, because although the sample median is an asymptoti-
cally linear estimator of the median under regularity conditions, there is a remainder.

Theorem 0.6. Suppose real-valued O1, ...On ∼ P i.i.d. has cumulative distribution
function F , and Fn denotes the empirical c.d.f. Suppose that F has a density f that is
positive and continuous in a neighborhood of the unique median θ, where F (θ) = 1/2. If
θn is the sample median F−1(1/2) = inf{x : Fn(x) ≥ 1/2}, then θn is an asymptotically
linear estimator of θ with influence curve IC(Oi|P ) = − 1

f(θ)
(1(O ≤ θ)− 1/2).

proof: We first establish the consistency of θn. As the median is given to be unique,
F (θ + ε) > 1/2 and F (θ − ε) < 1/2 for any ε > 0. Hence, P (| θn − θ| > ε) =
P (Fn(θ − ε) ≥ 1/2) + P (Fn(θ + ε) < 1/2) →P 0 because Fn(t) →P F (t) for any t by
the law of large numbers. Thus θn →P θ.

Let Gn denote the empirical process
√
n(Fn − F ) (technically this is

√
n(Pn − P ) ∈

(l∞(F), ‖ ·‖F) where F = {1((−∞, t]) : t ∈ R}). It can be shown via empirical process
theory that Gn =⇒ G, for G the P -Brownian Bridge. So as (Gn, θn) =⇒ (G, θ) and G
is continuous, the continuous mapping theorem yields Gn(θ)−Gn(θn) = oP (1).

As f is continuous in a neighborhood of θ, Taylor expanding F (θn) about θ gives
F (θn) = 1/2 + (θn − θ)(f(θ) + oP (1)). Clearly Fn(θn) = 1/2 + oP (n−1/2), so Gn(θn) =√
n(Fn(θn)−F (θn)) =

√
n(1/2+ oP (n−1/2)−1/2− (θn− θ)(f(θ)+ oP (1)) = −

√
n(θn−

θ)(f(θ) + oP (1)).

Rearranging terms gives
√
n(θn−θ) = −Gn(θn)

f(θ)
+oP (1) = −Gn(θ)

f(θ)
+Gn(θ)−Gn(θn)

f(θ)
+oP (1) =

−Gn(θ)
f(θ)

+ oP (1) from our comments above. From the definition of Gn, dividing both

sides by
√
n gives that θn = θ − 1

n

∑n
i=1

1
f(θ

(1(Oi ≤ θ)− 1/2) + oP (n−1/2), proving the
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desired result. �

Bootstrapping

Note that in the case of the median under the conditions of the previous theorem,
the influence curve teaches us that

√
n(θn − θ) =⇒ N(0, 1

4f2(θ)
). So how can we give

asymptotically valid confidence intervals for the median θ if we have to estimate an
asymptotic variance that involves a density function. Densities can be very poorly
behaved and hard to estimate. The easiest way out is to just use the bootstrap, which
provides automatic confidence intervals. The bootstrap has been shown to work for
the median, and under very general conditions for asymptotically linear estimators. In
fact, the sample median was one of the examples discussed in Efron’s 1979 paper where
he invented the bootstrap method.

The Influence Curve and the Functional Delta Method

Often the easiest way to compute the influence curve of an estimator φ(Pn) of a pa-
rameter φ(P ) is to apply the functional delta method. The major difficulty is often
showing that φ is a Hadamard differentiable map. We summarize the result in the
following theorem.

Theorem 0.7. Suppose that O1, ..., On ∼ P i.i.d., and that Gn ∈ (l∞(F), ‖ · ‖F) is the
empirical process, so Gn(f) =

√
n(Pn(f)−P (f)) for f ∈ F . Let G1,O ∈ (l∞(F), ‖ · ‖F)

be defined by G1,O(f) = f(O)−EP (f(O)). Suppose F is a Donsker class (so Gn =⇒ G
for G the P -Brownian Bridge). If φ : (l∞(F), ‖ · ‖F) → Rk has Hadamard derivative
dφP at P , then φ(Pn) is an asymptotically linear estimator for φ(P ) with influence
curve IC(O|P ) = dφP (G1,O).

proof: As dφP is a linear map andGn = 1√
n

∑n
i=1G1,Oi

, dφP (Gn) = 1√
n

∑n
i=1 dφP (G1,Oi

) =
1√
n

∑n
i=1 IC(Oi|P ). But by the functional delta method (the second statement in the

theorem),
√
n(φ(Pn) − φ(P )) = dφP (Gn) + oP (1) = 1√

n

∑n
i=1 IC(Oi|P ) + oP (1), so

dividing both sides by
√
n gives that φ(Pn) = φ(P ) + 1

n

∑n
i=1 IC(Oi|P ) + oP (n−1/2),

thus proving the desired result. �

Terminology for Normed Spaces

Definition: A (real) linear space D is a set with addition and scalar multiplication
defined such that if d1, d2, d3 ∈ D and c1, c2 ∈ R:

c1d1 + c2d2 ∈ D (closed under linear combination).
d1 + d2 = d2 + d1 (commutative). d1 + (d2 + d3) = (d1 + d2) + d3 (associative addition).
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There exists 0 ∈ D such that d1 + 0 = d1 and d1 + (−d1) = 0.
1d1 = d1.
c1(c2d1) = (c1c2)d1 (associative multiplication).
c1(d1 + d2) = c1d1 + c1d2 and (c1 + c2)d1 = c1d1 + c2c1 (distributive).

Definition: A (real) normed space (also called a normed linear space) (D, ‖ · ‖) is a real
linear space D and a function ‖ · ‖ : D → R such that for d1, d2 ∈ D and c ∈ R:

‖d1‖ ≥ 0 and ‖d1‖ = 0 if and only if d1 = 0.
‖cd1‖ =| c | ‖d1‖.
‖d1 + d2‖ ≤ ‖d1‖+ ‖d2‖ (triangle inequality).

Basic example: Rk is normed space. For p ≥ 1, ‖(x1, ..., xn)‖ = (
∑n

i=1 |xi|p)1/p defines
a norm. p = 2 corresponds to the Euclidean norm.

More complicated examples: The space of cadlag functions (D(a, b), ‖ · ‖), which is the
space of all functions defined on (a, b) that are right continuous with left limits, such
that ‖d‖ = supa≤t≤b | d(t) |. Also, (l∞(F), ‖ · ‖F), defined previously, is a normed
space. Sets of random variables can also live in normed spaces. LP0 ≡ {X : EPX =
0, EP |X|p <∞} is a normed space for p ≥ 1 with ‖X‖ = (E|X|p)1/p.

Definition: If d1, d2, ... is a sequence in a normed space (D, ‖ · ‖), the sequence is said
to converge to d ∈ D if for all ε > 0 there exists a positive integer N such that n ≥ N
implies ‖dn − d‖ ≤ ε.

Definition: If d1, d2, ... is a sequence in a normed space (D, ‖ · ‖), we say the sequence
is Cauchy if for all ε > 0 there exists a positive integer N such that n ≥ N implies
supm,n≥N‖dm − dn‖ ≤ ε.

Definition: We say that a normed space (D, ‖ · ‖) is a Banach space if every Cauchy
sequence in (D, ‖ · ‖) converges to some d ∈ D.

Definition: If f : (D, ‖ · ‖) → (E, ‖ · ‖) is a mapping from one normed space to another,
we say that f is continuous at d ∈ D if for every sequence d1, d2, ... in D converging to
d we have that f(x1), f(x2), ... converges to f(d) in (E, ‖ · ‖). If f is continuous at all
d ∈ D, we say that f is a continuous function.

Definition: If (D, ‖ · ‖) is a normed space, then for any ε > 0 and d ∈ D, the open ball
of radius ε at d is defined by Bε(d) = {d′ ∈ D : ‖d′ − d‖ < ε}.

Definition: If D0 ⊂ D for (D, ‖ · ‖) a normed space, we say that D0 is an open set if
for every d0 ∈ D0 there exists ε(d0) such that Bε(d0)(d0) ⊂ D0. A subset of D is said to
be closed if its complement is open.

Definition: If D0 ⊂ D for (D, ‖ · ‖) a normed space, we say that D0 is bounded if for
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each d0 ∈ D0 there exists r(d0) > 0 such that D0 ⊂ Br(d0)(d0).

Definition: If D0 ⊂ D for (D, ‖ · ‖) a normed space, a collection of sets is a cover if
D0 is a subset of the union of sets in the collection. If each set in the collection is
open, the collection is said to be an open cover. If the union of sets in a subcollection
of the collection still contains D0, the subcollection is said to be a subcover of D0. If
every open cover of D0 contains a finite subcover, D0 is said to be compact. A set D0 is
compact if and only if every sequence d1, d2, ... ∈ D0 contains a subsequence converging
to an element of D0.

Definition: If (D, ‖ · ‖) is a normed space, the normed space is said to be separable if
there exists a countable dense subset {d1, d2, ...} of D such that for any d ∈ D and
any ε > 0 there exists dn in the countable subset such that ‖d− dn‖ ≤ ε. That is, the
normed space can be approximated arbitrarily well by a countable set.

Note on Integration Theory

Definition: Let D[0, b] denote the space of cadlag functions on [0, b]. BVM ⊂ D[0, b]
is the set of cadlag functions on [0, b] of bounded variation, indexed by some M > 0.
A ∈ BVM if

∑n
i=1 |A(ti)− A(ti−1)| ≤M for all 0 ≤ t1 ≤ ... ≤ tn ≤ b.

Suppose a is a Borel measurable function on [0, b]. If A is a monotone cadlag function

on [0, b] such that −∞ < A(0) ≤ A(b) < ∞, recall that
∫ b

0
adA is defined as

∫ b

0
adµ.

Here µ is the measure on [0, b] (with respect to the Borel sigma-field) uniquely defined
(by Caratheodory’s Extension Theorem) by µ((0, b]) = A(b) − A(0). It can be shown
that if A ∈ BVM ⊂ D[0, b] then A can be uniquely written as A1−A2 where A1, A2 are

monotone cadlag functions such that −∞ < Aj(0) ≤ Aj(b) < ∞. In this case
∫ b

0
adA

can be defined as
∫ b

0
adA1 −

∫ b

0
adA2. If A is not necessarily of bounded variation,

but a is of bounded variation, then
∫ b

0
adA can be defined by integration by parts as

a(A(b))− a(A(0))−
∫ b

0
A(t−)da(t).

Product Integrals

Our treatment is based on section 3.9 of van der Vaart and Wellner. For an excellent
overview, see www.math.uu.nl/people/gill/Preprints/prod int 0.pdf

Definition: Let D[0, b] denote the space of cadlag functions on (0, b]. The product inte-
gral of A ∈ BVM ⊂ D[0, b] is a function φ(A) ∈ D[0, b] denoted by φ(A)(t) = Π0<s≤t(1+
dA(s)). It is defined by limmaxi |ti−ti−1|→0 Πi(1+A(ti)−A(ti−1)), where the limit is taken
over partitions 0 = t0 < t1 < ... < tn = t with sup0≤s≤b min1≤i≤n |ti − s| → 0. It can
be shown that the limit exists and is unique, and doesn’t depend on which sequence
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of partitions (t0, t1, ..., tn) is chosen, so φ(A) is well-defined. For s < t, φ(A)(s, t] is

notation for φ(A)(t)
φ(A)(s)

.

Another way to represent the product integral is as follows.

Theorem 0.8. For A ∈ BVM ⊂ D(0, b], the product integral φ(A) ∈ D[0, b] is equal
to the unique solution of the Volterra equation φ(A)(t) = 1 +

∫ t

0
φ(A)(s−)dA(s), for

0 ≤ t ≤ b.

Suppose that a1, ..., an, b1, ..., bn are real numbers. It is easy to check by induction that
Πn
i=1ai−Πn

i=1bi =
∑n

i=1(Π
i−1
j=1aj)(ai−bi)(Πn

k=i+1bk). For n ≤ 2, it is just algebra to check

that a1a2−b1b2 = (a1−b1)b2 +a1(a2−b2). For n > 2, let ã2 = Πn
i=2ai and b̃2 =

∏n
i=2 bi.

Then Πn
i=1ai − Πn

i=1bi = a1ã2 − b1b̃2 = (a1 − b1)b̃2 + a1(ã2 − b̃2) = (a1 − b1)
∏n

i=2 bi +
a1

∑n
i=2(Π

i−1
j=2aj)(ai−bi)(Πn

k=i+1bk) =
∑n

i=1(Π
i−1
j=1aj)(ai−bi)(Πn

k=i+1bk). This telescoping
trick for representing differences of products can be generalized to differences of product
integrals with the following result, known as the Duhamel equation.

Theorem 0.9. Suppose that A,B ∈ BVM ⊂ D[0, b]. If φ denotes the product integral,
then φ(B)(t)− φ(A)(t) =

∫ t

0
φ(A)(u)φ(B)(u, t]d(B − A)(u).

We will need a further result before we can give the Hadamard derivative of the product
integral. This can be proven by integration by parts. See problem 3.9.8 of van der Vaart
and Wellner.

Theorem 0.10. Suppose that A,B ∈ BVM ⊂ D[0, b]. Recall that φ(A), φ(B) ∈ D[0, b].
For d ∈ D[0, b], ‖d‖∞ denotes sup0≤t≤b |d(t)|. If φ denotes the product integral, then
‖φ(B) − φ(A)‖∞ ≤ C(M)‖B − A‖∞ for a constant C(M) depending on M . Thus,
product integration is uniformly continuous.

We are now ready to provide the main result on product integration.

Theorem 0.11. φ : (BVM , ‖·‖∞) ⊂ (D[0, b], ‖·‖∞) → (D[0, b], ‖·‖∞) is Hadamard dif-
ferentiable at A ∈ BVM ⊂ D[0, b], with Hadamard derivative dφA(α)(t) =

∫ t

0
φ(A)(u)φ(A)(u, t]dα(u),

where φ denotes the product integral.

sketch of proof: Suppose a scalar sequence tn → 0 and αn ∈ D[0, b] → α ∈ D[0, b].

‖φ(A+tnαn)−φ(A)
tn

−
∫ ·

0
φ(A)(u)φ(A)(u, ·]dα(u)‖∞

= ‖ 1
tn

∫ ·
0
φ(A)(u)φ(A+ tnαn)(u, ·]d(A− A+ tnαn)−

∫ ·
0
φ(A)(u)φ(A)(u, t]dα(u)‖∞

= ‖
∫ ·

0
φ(A)(u)φ(An)(u, ·]dαn(u)−

∫ ·
0
φ(A)(u)φ(A)(u, t]dα(u)‖∞

If αn or α is replaced with α̃, the error in each integral is bounded by a constant times
‖αn − α̃‖∞ or ‖α − α̃‖∞ respectively, which can be shown with integration by parts.
By choosing α̃ of bounded variation close to α (and thus αn for sufficiently large n) it
suffices to show that ‖

∫ ·
0
φ(A)(u)φ(An)(u, t]dα̃(u)−

∫ ·
0
φ(A)(u)φ(A)(u, t]dα̃(u)‖∞ → 0.

This follows because φ(An) converges uniformly to φ(A) by the previous theorem. �
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Product Integrals and Cumulative Hazards

We first prove the Hadamard differentiability of a very simple map.

Theorem 0.12. Let D?[a, b] denote the subset of functions in D[0, b] that are bounded
below by constant ε > 0, where ε is fixed. Then φ : (D[0, b], ‖ · ‖∞) → (D[0, b], ‖ · ‖∞)
is Hadamard differentiable at B ∈ D?[a, b] with Hadamard derivative dφB(β) = − β

B2 .

proof: Consider a scalar sequence tn → 0, and βn ∈ D[0, b] → β ∈ D[0, b].

Note that for |b(s) − B(s)| ≤ tn|βn(s)| that |b(s) − B(s)| ≤ tn|βn(s)| ≤ tn‖βn‖∞ ≤
tn‖βn − β‖∞ + tn‖β‖∞ → 0. For the real-valued function f(x) = 1/x, note that
f ′(x) = −1/x2 is uniformly continuous for 0 < ε ≤ x ≤ ‖B‖∞, so as B(s) is bounded
away from ε > 0, f ′(b(s)) → − 1

B(s)
uniformly for 0 ≤ s ≤ b.

Then by a first order Taylor expansion of f(x) = 1/x about B(s), φ(B+tnβn)(s)−φ(B)
tn

+
b
B2 (s) = 1

tn
( 1
B(s)+tnβn(s)

− 1
B(s)

) + b(s)
B2(s)

= 1
tn

(tnβn(s))f
′(b(s)) + β(s)

B2(s)
= βn(s)f

′(b(s)) +
β(s)
B2(s)

→ 0 uniformly for 0 ≤ s ≤ b, by above, and the fact that ‖βn − β‖∞ → 0. �

We can now prove the Hadamard differentiability of the so-called cumulative hazard.

Theorem 0.13. Let E denote the space {(A,B) : A,B ∈ D[0, b], A ∈ BVM , B ≥
ε > 0}. The map φ : D[0, b]2 → D[0, b] given by φ(A,B) =

∫ ·
0

1
B
dA is Hadamard

differentiable (using the supremum norm for the domain and range spaces) for (A,B) ∈
E with Hadamard derivative dφ(A,B)(α, β) =

∫ ·
0
(1/B)dα−

∫ ·
0
(β/B2)dA.

proof: We write the map as (A,B) → (A, 1/B) →
∫ ·

0
1
B
dA. From the previous the-

orem, the map (A,B) → (A, 1/B) has derivative map at (A,B) given by (α, β) →
(α,−β/B2). From the Homework 1 question on the Wilcoxin statistic, (A, 1/B) →∫ ·

0
1
B
dA has derivative map at (A, 1/B) given by (α,−β/B2) →

∫ ·
0

1
B
dα −

∫ ·
0

β
B2dA.

The result now follows by the chain rule. �

We can now consider composing comulative hazard functions and product integrals.

Theorem 0.14. Let E denote the space {(A,B) : A,B ∈ D[0, b], A ∈ BVM , B ≥ ε >
0}. Consider the map φ : D[0, b]2 → D[0, b] defined by (P1, P2) → (Λ =

∫ ·
0

1
P2
dP1) →

Π0<s≤·(1 − dΛ(s)). Then if ψ(Λ)(t) ≡ Π0<s≤t(1 + dΛ(s)) for Λ(t) =
∫ t

0
1
P2
dP1), φ is

Hadamard differentiable (using the supremum norm for the domain and range spaces)
at (A,B) ∈ E with Hadamard derivative given by:

(α, β) →
∫ ·

0
ψ(Λ)(u)ψ(Λ)(u, ·]( 1

B(u)
dα(u)− β(u)

B(u)2
dA(u)).

proof: This is just the chain rule, applied to the previously given Hadamard derivatives
of the cumulative hazard and product integral maps. �

14



Survival Analysis

The most basic setup in a field of statistics known as survival analysis is as follows.
We are interested a random variable 0 ≤ T with cumulative distribution function F
and survival function S = 1−F . Here T is often called a survival time or failure time.
We would like to estimate S, but aren’t able to observe n i.i.d. copies of T . Instead we
observe n i.i.d. copies of O = (T̃ ,∆) ∼ P , where T̃ = min(T,C) and ∆ = 1(T ≤ C) for
0 ≤ C ∼ G ⊥ F a censoring time. As usual, Pn denotes the empirical distribution. For
simplicity, we will here assume that F and G represent continuous distributions. The
most common application is where the survival time T measures the time untill death
or recurrence of illness in a medical study, and the censoring time C is the time at which
the subject drops out of the study or is unavailable for follow-up. Another common
application is in reliability analysis where T measures the length of time a product such
as a car lasts before breaking down. The assumption that T ⊥ C (meaning T and C
are independent) is fairly strong, and there are many examples where it is violated, but
it can be slightly weakened to a so called coarsening at random assumption discussed
in van der Laan and Robins. But without coarsening at random, essentially nothing
can be said about the distribution of T .

Identifiability and Estimation in Survival Analysis

We first note that if censoring occurs before some time b, then it should be very difficult
to estimate the survival function after b, because we have no data on T conditional
on T > b. We therefore consider some b such that P (T̃ > b) > 0, and will consider
estimating the surival function S on [0, b].

Let F1 = {f(O) = 1(T̃ ≤ u,∆ = 1) : 0 ≤ u ≤ b}.
Let F2 = {f(O) = 1(T̃ ≥ u) : 0 ≤ u ≤ b)}.
Let F = F1 ∪ F2.

Then for P1(t) = P (T̃ ≤ t,∆ = 1) and P2(t) = P (T̃ ≥ t), the map P → (P1, P2) maps
l∞(F) (with the norm ‖ · ‖F) to the bivariate space on cadlag functions D[0, b]2 (with
the supreumum norm). Because this map is linear and continuous, it is equal to its
own Hadamard derivative.

Because we’ve assumed that P (T̃ > b) > 0, P2 is bounded away from O on [0, b].
From our previous notes, this implies the map (P1, P2) →

∫ ·
0

1
P2(u)

dP1(u) from D[0, b]2

to D[0, b] is Hadamard differentiable (using the supremum norm in the domain and
range spaces) at (P1, P2) with derivative map (α, β) →

∫ ·
0

1
B
dα −

∫ ·
0

β
B2dP1. However,

the independence of T and C implies that
∫ ·

0
1

P2(u)
dP1(u) =

∫ ·
0

1
1−F (u−)

dF (u) ≡ Λ, the

cumulative hazard function. For φ : P → (P1, P2) →
∫ ·

0
1

P2(u)
dP1(u) (mapping l∞(F)

to D[0, b]), this suggests estimating Λ(·) = φ(P )(·) with Λn(·) ≡ φ(Pn)(·), and this is
called the Nelson-Aalen estimator.
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For n observations, let t1, ..., tm denote the ordered times at which failures occur (so
(T̃ = ti,∆ = 1), and let ni denote the number of observations still at risk of failing at
time ti (so ni =

∑n
j=1 1(T̃ ≥ ti). Then the Nelson-Aalen estimator can be written as

Λn(t) =
∑

{i:ti≤t}
di

ni
.

Theorem 0.15. The Nelson-Aalen estimator Λn(t) is an asymptotically linear estima-
tor of Λ(t) for 0 ≤ t ≤ b with influence curve given by:

IC(O|P ) =
∫ t

0
1

P2(u)
d(1(T̃ ≤ u,∆ = 1)− P1(u))−

∫ t

0
1(T̃≥u)−P2(u))

P2(u)2
dP1(u).

proof: This follows from applying the functional delta method to φ : P → (P1, P2) →∫ t

0
1

P2(u)
dP1(u) (mapping (l∞(F), ‖ · ‖F) to R), as it can be shown that F is a Donsker

class. Technically we use the chain rule, but the mapping P → (P1, P2) from l∞(F) to
D[0, b]2 is equal to its own derivative. Consider G ∈ l∞(F), and the functions f1,u =
1(T̃ ≤ t,∆ = 1) ∈ F1 and f2,u = 1(T̃ ≥ u) ∈ F2. The previously given Hadamard
differentiability of the cumulative hazard map tells us that the Hadamard derivative
of φ at P , denoted by dφP : l∞(F) → R, is given by dφP (G) =

∫ t

0
1

P2(u))
dG(f1,u) −∫ t

0

G(f2,u)

B2(u)
dP1(u). The desired result follows from the functional delta method, recall-

ing the influence curve is IC(O|P ) = dφP (G1,O), where G1,0 is the empirical pro-
cess for the single observation O, so G1,O(f1,u) = 1(T̃ ≤ u,∆ = 1) − P1(u) and
G1,O(f2,u) = 1(T̃ ≥ u)− P2(u). �

From the definition of Λ, 1 −
∫ ·

0
1

1−F (u−)
dΛ(u) = S(·). From the representation of the

product integral in the previous notes as the unique solution of the Volterra equation,
this implies that S(·) = Π0≤u≤·(1− dΛ(u)), where Π here denotes the product integral.
As Λ ∈ D[0, b] was shown to be identifiable from P through (P1, P2), this shows that
S ∈ D[0, b] is also identifiable from P . So for ψ : P → (P1, P2) →→ Π0≤u≤·(1 −
dΛ(u)) (mapping l∞(F) to D[0, b]), S(·) = ψ(P )(·). This suggests estimating S(·) with
Sn(·) ≡ ψ(Pn)(·), called the Kaplan-Meier estimator. Using the previous notation, the
Kapalan-Meier estimator can be written as Sn(t) = Π{i:ti≤t}(1− di

ni
).

Theorem 0.16. The Kaplan-Meier estimator Sn(t) is an asymptotically linear esti-
mator of S(t) for 0 ≤ t ≤ b with influence curve given by:

IC(O|P ) = −S(t)[
∫ t

0
( 1
P2(s)

d(1(T̃ ≤ s,∆ = 1)− P1(s))−
∫ t

0
1(T̃≥s)
P 2

2 (s)
dP1(s)].

This simplfies to IC(O|P ) = −S(t)[1(T̃≤t,∆=1)

P2(T̃ )
−

∫ min(T̃ ,t)

0
1

P 2
2 (s)

dP1(s)].

proof: We again apply the functional delta method to the map ψ : P → (P1, P2) →
Λ → Π0≤s≤t(1 − dΛ(s)) = S(t) from (l∞(F), ‖ · ‖F) to R, as it can be shown that
F is a Donsker class. In our use of the chain rule, the mapping P → (P1, P2) from
l∞(F) to D[0, b]2 is equal to its own derivative. Consider G ∈ l∞(F), and the func-
tions f1,s = 1(T̃ ≤ s,∆ = 1) ∈ F1 and f2,s = 1(T̃ ≥ s) ∈ F2. The previously given
Hadamard differentiability of the composition of the cumulative hazard function and
the product integral gives that ψ is Hadamard differentiable at P , with Hadamard
derivative denoted by dψP : l∞(F) → R, given by:

dψP (G) = −
∫ t

0
Π0≤u<s(1− dΛ(u))Πs<t(1− dΛ(u))( 1

P2(s)
dG(f1,s)− G(f2,s)

P 2
2 (s)

dP1(s))
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= −S(t)
∫ t

0
( 1
P2(s)

dG(f1,s)− G(f2,s)

P 2
2 (s)

dP1(s)).

Note that the − enters trivially from the chain rule because we are applying the prod-
uct integral map to −Λ. The S(t) comes from the fact that Π0≤u<s(1−dΛ(u))Πs<t(1−
dΛ(u)) = Π0≤u≤t(1 − dΛ(u)) = S(t) because we have assumed that S is a con-
tinuous distribution. The desired result follows from the functional delta method,
recalling the influence curve is IC(O|P ) = dφP (G1,O), where G1,0 is the empirical
process for the single observation O, so G1,O(f1,s) = 1(T̃ ≤ s,∆ = 1) − P1(s) and
G1,O(f2,s) = 1(T̃ ≥ s)− P2(s). �

Lecture of February 22, 2005

Functional δ-method for analyzing Z-estimators

The general methodology for analyzing Z-estimators discussed in the last lecture
requires that the map θ −→ U(θ, P ) be Frechét differentiable. This requirement is
easily met if θ is finite-dimensional, but may be difficult to establish in the infinite-
dimensional case. We will now discuss another approach for analyzing the asympotic
behavior of Z-estimators that is based on the functional δ-method and that does not
require the map θ −→ U(θ, P ) to be Frechét differentiable.

Suppose we observe n i.i.d. copies O1, ..., On of O ∼ P . Consider the parametef
of interest θ(P ) ∈ (D1, ‖ ‖1). Let P ∈ (D2, ‖ ‖2), e.g. (D2, ‖ ‖2) = (l∞(F), ‖ ‖F) for
a sufficiently rich class of functions F . Suppose there exists a mapping U : (D1, ‖ ‖1

)×(D2, ‖ ‖2) −→ (D3, ‖ ‖3) such that θ(P ) can be defined as the solution of U(θ, P ) = 0.
Typically, we will have that (D3, ‖ ‖3) = (D1, ‖ ‖1), although this is not required. Let
ϕ : (D2, ‖ ‖2) −→ (D1, ‖ ‖1) be the mapping that maps P into the solution θ of the
equation U(θ, P ) = 0. Now let the estimator θn be defined as θn = ϕ(Pn), i.e. let θn
be the solution of U(θn, Pn) = 0.

As before, we want to prove that
√
n(θn − θ) =

√
n(ϕ(Pn) − ϕ(P ))

D
=⇒ Z in

(D1, ‖ ‖1,B) as n → ∞. To apply the functional δ-method, we first use empiri-

cal process theory to verify that Gn =
√
n(Pn − P )

D
=⇒ G in (D2, ‖ ‖2). Next we

need to establish that the map ϕ is Hadamard differentiable tangentially to a sub-
space D∗

2 = (D∗
2, ‖ ‖2) ⊆ (D2, ‖ ‖2) such that G ∈ D∗

2, i.e. we need to show that for
any sequences {hn =

√
n(P ′

n − P ′)}n≥1 with hn → h for some h ∈ D∗
2 we have that

‖
√
n(ϕ(P ′

n) − ϕ(P ′)) − dϕ(P ′)(h) ‖1→ 0. We will lay out a roadmap of five steps,
A1-A5, to establish the required differentiability.

Consider the same setup as for the proof from last lecture:

√
n [U(θ′n, P

′)− U(θ′, P ′)] = −
√
n [U(θ′n, P

′
n)− U(θ′n, P

′)] (4)

A1: Show that P ′
n → P ′ =⇒ ϕ(P ′

n) → ϕ(P ′).
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To establish this continuity condition on ϕ see for example the consistency proof
from last lecture.

A2: Show that ‖
√
n(U(θ′n, P

′
n)− U(θ′n, P

′))− d
dP ′U(θ′, P ′)(

√
n(P ′

n − P )) ‖3−→ 0.

Here you can use that, by A1, θ′n → θ′ = ϕ(P ′). Now A2 implies that the right-hand
side and hence also the left-hand side in (1) converges to − d

dP ′U(θ′, P ′)(h).

A3: Show that there exists a linear mapping dfn : (D1, ‖ ‖1) −→ (D3, ‖ ‖3), possibly
depending on θ′n, θ

′, and P , such that U(θ′n, P
′)− U(θ′, P ′) = dfn(θn − θ).

Write U(θ′n, P
′)− U(θ′, P ′) = f(θ′n)− f(θ′). Consider the example

f(θ′n) =

∫
1

θ′n
h(P )dP, f(θ′) =

∫
1

θ′
h(P )dP

Then

f(θ′n)− f(θ′) =

∫ (
1

θ′n
− 1

θ′

)
h(P )dP =

∫
θ′n − θ′

θ′nθ
′ h(P )dP = dfn(θ

′
n − θ′)

where dfn(θ
′
n − θ′) depends on θ′n, θ

′, and P , but is linear in θ′n − θ′.

Note that this step does not require any Frechét differentiability of the map θ −→
U(θ, P ). Now A3 implies that dfn(

√
n(θ′n − θ′)) → − d

dP ′U(θ′, P ′)(h), or equivalently
that dfn(

√
n(θ′n − θ′)) + d

dP ′U(θ′, P ′)(h) → 0

A4: Show that dfn is 1-1 and onto for all n and that lim supn ‖ df−1
n ‖<∞.

This type of continuous differentiability of dfn and the linearity of df−1
n imply that

df−1
n

(
dfn(

√
n(θ′n − θ′)) +

d

dP ′U(θ′, P ′)(h)

)
=
√
n(θ′n−θ′))+df−1

n

(
d

dP ′U(θ′, P ′)(h)

)
−→ 0

A5: Show that, for any g, θ′n → θ′ =⇒ df−1
n − df−1(g) → 0, where df−1(g) =[

d
dθ
U(θ′, P ′)

]−1
(g).

Now A5 implies that
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√
n(ϕ(Pn)−ϕ(P ))

D
=⇒ −

[
d

dθ
U(θ, P )

]−1 (
d

dP
U(θ, P )(

√
n(Pn − P ))

)
≡ dϕ(P )(

√
n(Pn−P ))

�

Homework 3 Solution, prepared by Dan Rubin

The Exponential with Censoring

We can write the likelihood for one observation as:
L(λ) = [f(1−G)(T̃ )]∆[SdG(T̃ ]1−∆ = [λ exp(−λT̃ )(1−G(T̃ ))]∆[exp(−λT̃ )dG(T̃ )]1−∆

l(λ) = logL(λ) = ∆[log(λ)− λT̃ ]− (1−∆)λT̃ + C, where C does not depend on λ.
U(λ) = d

dλ
l(λ) = ∆/λ− T̃ .

Since scores have mean zero, this implies λ = E∆/ET̃

Setting the score for n observations to zero, we see the mle is λn = ∆n/T̃ n, where

∆n = 1
n

∑n
i=1 ∆i, T̃ n = 1

n

∑n
i=1 T̃i, and it is the mle because U is strictly decreasing in

λ, so the log-likelihood is strictly concave.

So for f(x, y) = x/y, with continuous gradient [1/y,−x/y2], a first-order Taylor expan-

sion about (E∆, ET̃ ), and the fact that ‖(∆n, T̃ n)− (E∆, ET̃ )‖ → 0 in probability by

LLN,
√
n(λn − λ) =

√
n(f(∆n, T̃ n)− f(E∆, ET̃ ))

=
√
n([∆n − E∆](1/ET̃ + op(1)) + [T̃ n − ET̃ ](−E∆/(ET̃ )2 + op(1))).

As
√
n(∆n − E∆),

√
n(T̃ n − ET̃ ) = Op(1) by the CLT, this linearlization gives the

influence curve IC(O|P ) = (∆− E∆)/ET̃ − (E∆)(T̃ − ET̃ )/(ET̃ )2.

ML Consistency∫
log fθ

fθ0
fθ0dx ≤ log

∫
fθ

fθ0
fθ0dx = log(1) = 0 with equality iff fθ = fθ0 by Jensen’s

inequality, as log(·) is strictly concave on (0,∞). By identifiability, this implies KL(·)
is uniquely maximized at θ0.

As θn is the mle, Pn log fθn ≥ Pn log fθ0 .
We can rewrite this as P log fθn + 1√

n
Gn log fθn ≥ P log fθ0 + Gn log fθ0 , for Gn =√

n(Pn − P ).
KL(θ0) = P log fθ0 ≤ P log fθn ≤ P log fθ0 − 2√

n
supθ∈Θ |Gn log fθ| → P log fθ0 =

KL(θ0) in probability, by the given Glivenko-Cantelli condition, implying that KL(θn)
converges to KL(θ0) in probability.

As {θ ∈ Θ : |θ− θ0| ≥ ε} is compact (check it is closed and bounded if Θ is), KL takes
on its maximum on the set, which is less than KL(θ0) by identifiability, so there is a
δ(ε) > 0 such that P (|θn − θ0| ≥ ε) ≤ P (KL(θ0)−KL(θn) > δ(ε)) → 0.
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Bracketing and Covering Numbers

Definition: The covering number N(ε,F , ‖ ·‖) of a class of functions F is the minimum
number of balls {g : ‖g − f‖ ≤ ε} such that the union of the balls contians F . The
entropy is defined as the logarithm of the covering number.

Note that the covering number increases as epsilon decreases, and that it depends on
what norm is chosen.

Definition: Given two functions l, u, define [l, u] = {f : u ≤ f ≤ l}. The bracketing
number N[](ε,F , ‖ ·‖) is the minimum number of brackets [l, u] with ‖u− l‖ ≤ ε needed
such that the union contains F . The logarithm of the bracketing number is called the
bracketing entropy.

Theorem 0.17. If the norm ‖ · ‖ is such that |f | ≤ |f | implies ‖f‖ ≤ ‖g‖, then
N(ε,F , ‖ · ‖) ≤ N[](2ε,F , ‖ · ‖).

proof: For such norms, if f is in the 2ε bracket [l, u] then it is the ε-ball centered at
(l + u)/2. �

Unfortunately, the above theorem has no converse allowing us to bound bracketing
numbers from given covering numbers. This means that a good bracketing result is
much stronger than a good covering number result.

Definition F (o) ≡ supf∈F |f(o)| is the envelope for F . In general, we will need
PF 2 < ∞ to establish that F is a P -Donsker class. The Lr(Q) norm is defined
by ‖f‖Q,r = (

∫
f rdQ)1/r. the uniform entropy number (relative to Lr(·)) is given by

supQN(ε‖F‖Q,r,F , ‖ · ‖Q,r), where the supremum is taken over all possible probability
distributions.

Theorem 0.18. F is P -Glivenko-Cantelli if N[](ε,F , L1(P )) <∞ for every ε > 0.

Theorem 0.19. F is P-Glivenko-Cantelli if PF <∞ and supQ:QF r<∞N(ε‖F‖Q,1,F , L1(Q)) <
∞ for every ε > 0.

Theorem 0.20. F is P -Donsker if
∫∞

0

√
logN[](ε,F , L2(P )dε <∞.

Theorem 0.21. If F is such that
∫∞

0
supQ

√
logN(ε‖F‖Q,2,F , L2(Q)dε < ∞, then

F is P -Donsker for every P such that PF 2 < ∞. This integral condition holds if
supQ logN(ε‖F‖Q,2,F , L2(Q)) ≤ K(1/ε)2−δ, for some δ > 0.

Note that in the last two theorems, we only have to worry about how the integral be-
haves for small ε, because the bracketing and covering numbers increase as ε decreases,
and for Glivenko-Cantelli and Donsker classes these numbers will be one for sufficiently
large ε. Also note that the bracketing number conditions are much weaker than the
covering number conditions, and this is because it is harder to find a good bracketing
number than a good covering number.
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Some Examples of Donsker classes

The set of functions with uniformly bounded derivatives is a Donsker class. The class
of all monotone functions {f : 0 ≤ f ≤ F} is P -Donsker provided P -Donsker provided
that PF 2 <∞. The set of indicators of compact, convext subsets of a fixed bounded
subset of Rd is Donsker for d ≥ 2.

Permance Properties of Donsker classes

If F is Donsker and G ⊂ F , then G is Donsker. If F and G are Donsker, then so are
c1F + c2G (for scalars c1, c2), F ∪ G, F ∩ G, the closure of F (set of functions that
are limit points both pointwise and in L2(P )), and the set of convex combinations of
functions in F . Also, if F is Donsker with PF <∞ and 1/f ≥ δ > 0 for f ∈ F , then
1/F = {1/f : f ∈ F} is Donsker. See section 2.10 of van der Vaart and Wellner for
more examples.

1 Estimating Functions

In this section, we will first define the orthogonal complement of the nuisance tangent
space and review efficiency theory. Subsequently, we link this orthogonal complement
of the nuisance tangent space to the construction of estimating functions that are
elements of this space when evaluated at the true parameter values and show that the
expectation of such estimating functions has a derivative zero w.r.t. to fluctuations
of a variation-independent nuisance parameter ρ. To avoid additional notation, in our
presentation we use the introduced notation for the full data model, but obviously
X now represents an observed data random variable so that our presentation applies,
in particular, to our censored data model. At the end of this section we provide
a representation of the orthogonal complement of the nuisance tangent space in the
censored data model in terms of the orthogonal complement of the nuisance tangent
space in the full data model.

1.1 Orthogonal complement of a nuisance tangent space

Consider a full data structure model MF for the full data distribution FX . Given FX ,
for each g ranging over an index set, let ε → Fε,g be a one-dimensional submodel of
MF with parameter ε ∈ (−δ, δ), for some small δ > 0 (δ can depend on g), crossing
FX = F0,g at ε = 0, and score s(X) ∈ L2

0(FX), where L2
0(FX) is the Hilbert space of

functions of X with expectation zero and finite variance endowed with inner product
〈h1, h2〉FX

=
∫
h1(x)h2(x)dFX(x). Here, we define the score h as an L2

0(FX) limit:

lim
ε→0

∫ {
s(x)− 1

ε

dFε,g − dFX
dFX

(x)

}2

dFX(x) = 0.

One can also define the score pointwise as

s(X) = s(g)(X) =
d

dε
log

(
dFε,g
dFX

(X)

)∣∣∣∣
ε=0

∈ L2
0(FX).
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A typical choice of submodel is of the form dFε,g(x) = (1+ εg(x))dFX(x)+ o(ε) so that
s(g) = g. Let S ⊂ L2

0(FX) be the set of scores corresponding with the class {F·,g : g} of
one-dimensional submodels. Let T F (FX) ⊂ L2

0(FX) be the closure of the linear space
spanned by S. We refer to this Hilbert space T F (FX) as the tangent space of the full
data model. It is crucial that one chooses a rich class {F·,g : g} of models that locally
cover all possible score directions that the model MF allows.

Example 1.1. For example, let M = {fµ,σ2 : µ, σ2} be the family of normal distri-
butions. For each (δ1, δ2) we can define a one-dimensional submodel {fµ+εδ1,σ2+εδ2 : ε}
that has score δ1S1(X | µ, σ2) + δ2S2(X | µ, σ2), where S1, S2 are the scores for µ
(i.e., d/dµ log(fµ,σ2(X))) and σ2, respectively. Thus, the tangent space is the two-
dimensional space 〈S1, S2〉 spanned by these two scores. �

Nuisance tangent space. Let µ = µ(FX) ∈ IRk be a Euclidean parameter of interest.
We will now define the so-called nuisance tangent space. Since only the score of Fε,g is
relevant for the definition of tangent spaces and the efficiency bound, from now on we
will index the one-dimensional submodels by their score s, thereby making clear that
two different one-dimensional submodels with the same score are only counted as one.
In a full data modelMF = {Fµ,η : µ, η} with µ and η independently varying parameters
over certain parameter spaces, one can directly determine the nuisance tangent space
T Fnuis(FX) as the space generated by all scores of one-dimensional submodels Fµ,ηε just
varying the nuisance parameter. In general, we define the nuisance tangent space as
follows.

Definition 1.1. Suppose that for each submodel {Fε,s : ε} with score s, s ∈ S,
d/dεµ(Fε,s)|ε=0 exists. The nuisance scores are given by the scores of the models Fε,s
for which µ does not locally vary:{

s ∈ S :
d

dε
µ(Fε,s)|ε=0 = 0

}
.

The nuisance tangent space Tnuis(FX) is now the closure (in L2
0(FX)) of the linear space

generated by these nuisance scores:

T Fnuis(FX) ≡
{
s ∈ S :

d

dε
µ(Fε,s)|ε=0 = 0

}
.

Example 1.2. Suppose that X ∼ FX is a univariate real-valued variable and that the
model for FX is nonparametric. Then, we can choose as the class of one-dimensional
submodels dFε,s(x) = (1+εs(x))dFX(x) with s ∈ S = {s ∈ L2

0(FX) : s uniformly bounded}.
It follows immediately that the tangent space is saturated: T F (FX) = L2

0(FX).
Suppose that for a given t0, µ = F (t0) is the parameter of interest. We have

µ(Fε,s)− µ =

∫ {
I(0,t0](x)− µ

}
s(x)dFX(x).

This shows that
T Fnuis(FX) = {s ∈ L2

0(FX) : 〈s,Deff〉FX
= 0},

where Deff (x) ≡ I(0,t0](x)− µ ∈ L2
0(FX). �
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Pathwise derivative and gradients. Throughout this book, it is assumed that µ is
pathwise differentiable along each of the one-dimensional submodels in the sense that
for each s ∈ S

lim
ε→0

1

ε
(µ(Fε,s)− µ(FX)) = 〈`(· | FX), s〉FX

for an element `(· | FX) ∈ L2
0(FX)k. Note that the right-hand side is a k-dimensional

vector. For a k-dimensional function ` ∈ L2
0(FX)k and s ∈ L2

0(FX), we define the
vector inner product 〈`, s〉FX

as the vector with jth component 〈`j, s〉FX
. Similarly, we

will define a projection Π(s | T F (FX))) of a k-dimensional function s = (s1, . . . , sk)
onto a subspace (say) T F (FX) of L2

0(FX) componentwise as Π(sj | T F (FX))kj=1. Any
such element `(· | FX) ∈ L2

0(FX)k is called a gradient of the pathwise derivative, and
the unique gradient SF∗eff (· | FX) ∈ T F (FX)k (i.e., the gradient whose components are
elements of the full data tangent space) is called the canonical gradient or efficient
influence curve. Notice that S∗eff,j = Π(`j | T F (FX)) is the T F (FX)-component of
any gradient component `j (i.e., the pathwise derivative w.r.t. a class of submodels
with tangent space T F (FX) only uniquely determines the T F (FX)-component of the
gradient-components of the pathwise derivative). Thus, the set of all gradients is given
by {

` ∈ L2
0(FX)k : 〈`j, s〉FX

= 〈SF∗eff,j(X | FX , µ), s〉FX
, s ∈ T F (FX),∀j

}
, (5)

where j ∈ {1, . . . , k}. Note that if the full data model is nonparametric, then T F (FX) =
L2

0(FX), so T F,⊥nuis(FX) = 〈SF∗eff (· | FX)〉 is the k-dimensional space spanned by the
components of the canonical gradient and the only gradient is the canonical gradient
SF∗eff (· | FX). Note that for a vector function a ∈ L2

0(FX)k, we define < a >= {c>a :

c ∈ IRk} as the k-dimensional space spanned by the components of a. In general, the
larger the model, the smaller the set of gradients.
Nuisance tangent space in terms of the canonical gradient. Under the pathwise
differentiability condition, the nuisance tangent space is given by

T Fnuis(FX) = {s ∈ T F (FX) : s ⊥ SF∗eff (· | FX)}

and the tangent space equals

T F (FX) =< S∗Feff (· | FX) > ⊕T Fnuis(FX). (6)

Let T F⊥nuis(FX) be the orthogonal complement of the nuisance tangent space T Fnuis(FX)
in the Hilbert space L2

0(FX). Let Π(· | T Fnuis(FX)) be the projection operator onto the
nuisance tangent space. We have Π(s | T F,⊥nuis(FX)) = s− Π(s | T Fnuis(FX)) and

T F,⊥nuis = {s(X)− π(s | T Fnuis) : s ∈ L2
0(FX)}.

Alternatively, if ΠFX
: L2

0(FX) → T F (FX) is the projection operator onto T F (FX),
then it also follows that

T F,⊥nuis(FX) = {D ∈ L2
0(FX) : ΠFX

(D | T F (FX)) ∈< S∗Feff (· | FX) >}. (7)

Example 1.3. Let us continue Example 1.2. Notice that µ is indeed pathwise differ-
entiable with canonical gradient SF∗eff (X) = I(0,t0](X)−µ. The orthogonal complement
of the nuisance tangent space is thus 〈I(0,t0](X)− µ〉. �
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Equivalence between gradients and orthogonal complement of nuisance
tangent space. By (5), another characterization of a gradient is that each of its
components is an element of T F,⊥nuis whose projection onto T F (FX) = T Fnuis ⊕ 〈SF∗eff〉
equals the corresponding component of SF∗eff . Thus, gradients are orthogonal to T Fnuis
and need to be appropriately standardized. Since the projection of D ∈ L2

0(FX) onto
〈SF∗eff〉 is given by

Π(D | 〈SF∗eff〉) = E(DSF∗>eff )E(SF∗effS
F∗>
eff )−1SF∗eff ,

it follows that the set of gradients T F,⊥,∗nuis (FX) is given by the following standardized
versions of T F,⊥nuis:{

E(SF∗eff (X)SF∗>eff (X))
{
E(D(X)SF∗>eff (X | FX))

}−1
D : D ∈ T F,⊥nuis(FX)k

}
.

This shows that the space spanned by the components of all of the gradients (5) equals
the orthogonal complement T F,⊥nuis of the nuisance tangent space.

If D(X) plays the role of an estimating function, then the standardization matrix
in front of D actually reduces to the much simpler derivative standardization provided
in (??), as we will now show.

Lemma 1.1. Suppose that there exists a mapping (i.e., estimating function) (h, µ, ρ) →
Dh(· | µ, ρ) on HF × {(µ(FX), ρ(FX)) : FX ∈ MF} into functions of X such that one
can represent

T F,⊥nuis(FX) = {Dh(· | µ(FX), ρ(FX)) : h ∈ HF (FX)} (8)

as the range of an index set HF (FX) ⊂ HF of (h→ Dh(· | µ(FX), ρ(FX)) for all FX ∈
MF . In addition, assume that for all h ∈ H(FX) and each one-dimensional submodel
Fε,s, s ∈ S, we have for ε→ 0 ‖Dh(· | µ(Fε,s), ρ(Fε,s))−Dh(· | µ(FX), ρ(FX))‖FX

→ 0.
Assume that µ is a pathwise differentiable parameter at FX with canonical gradient
SF∗eff (· | FX) with 〈SF∗eff〉 ⊂ S.

Let

fh(s) ≡
d

dε
EFX

Dh(X | µ(Fε,s), ρ(Fε,s))

∣∣∣∣
ε=0

.

We have that an element D = Dh(· | µ(FX), ρ(FX)) ∈ T F,⊥nuis(FX)k for h ∈ H(FX)k is a
gradient if and only if

fh(s) =

{
0 if s is nuisance score
− d/dεµ(Fε,s)|ε=0 if s ∈ 〈SF∗eff〉 .

Proof. Firstly, by assumption,

1

ε
EFX

{Dh(X | µ(Fε,s), ρ(Fε,h))−Dh(X | µ(FX), ρ(FX))} =∫
Dh(x | µ(Fε,s), ρ(Fε,s))

1

ε

dFX − dFε,s
dFX

(x)dFX(x)

→ −〈Dh(· | µ(FX), ρ(FX)), s〉FX
if ε→ 0.
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By definition, Dh is a gradient if and only if for each s ∈ T Fnuis(FX) the latter inner
product equals zero and for s ∈ 〈SF∗eff〉 the latter inner product equals − d/dεµ(Fε)|ε=0,
which proves the lemma. �

Under further smoothness (in µ, ρ) conditions on (µ, ρ) → Dh(· | µ, ρ) and under
the assumption that µ, ρ are variation-independent parameters, one can now typically
show that Dh(· | µ(FX), ρ(FX)) is a gradient if and only if the Gateaux derivative
EDg(X | µ(FX), ρ) w.r.t. the nuisance parameter ρ at ρ = ρ(FX) (in every direction
allowed by the model) equals zero and the derivative of Dh(X | µ, ρ(FX)) w.r.t. µ at
µ(FX) equals minus the identity matrix:

d

dµ
EFX

D(X | µ, ρ) = −I, (9)

d

dρ
EFX

D(X | µ, ρ) = 0. (10)

Formally, we have the following lemma.

Lemma 1.2. Make the same assumptions as in the previous lemma. Assume that µ

and ρ are variation independent parameters of FX . Assume that for all h ∈ HF (FX)
k
,

µ → EFX
Dh(· | µ, ρ(FX)) is differentiable at µ(FX) with an invertible derivative ma-

trix. Assume that E(SF∗eff (X)SF∗>eff (X)) is invertible. If for h ∈ H(FX)k, Dh(X |
µ(FX , ρ(FX)) ∈ T F,⊥∗nuis (FX), then

d/dµEFX
Dh(X | µ, ρ(FX)) = −I,

where I denotes the k × k identity matrix. As a consequence, T F,⊥,∗nuis (FX) is given by−
{

d

dµ
EFX

Dh(X | µ, ρ(FX))

∣∣∣∣
µ=µ(FX)

}−1

Dh : h ∈ HF (FX)
k

 . (11)

Proof. Let s ∈ 〈SF∗eff〉. Note that ε → EFX
D(X | µ(Fε,s), ρ(FX)) is a composition

h1(h2(ε)) with h2(ε | s) = µ(Fε,s) and h1(µ) = EFX
D(X | µ, ρ(FX)). As in the proof of

the previous lemma, we show that

d/dεh1(h2(ε))|ε=0 = − d/dεµ(Fε,s)|ε=0 ,

where the right-hand side actually equals −h′2(0 | s). By the chain rule, we have that
the left-hand side equals d/dµh1(µ) ∗ h′2(0 | s). Thus, d/dµh1(µ) ∗ h′2(0 | s) = h′2(0 | s)
for all s ∈ 〈SF,∗eff〉. We now need h′2(0 | s = SF∗eff,j), j = 1, . . . , k, to be independent

vectors. However, the latter vectors are given by E(SF∗effS
F∗j
eff ), j = 1, . . . , k, so that

this independence is a consequence of the assumed invertibility of E(SF∗eff (X)SF∗>eff (X)).
This proves that d/dµh1(µ) = −I. �

Example 1.4. (Parametric model) Consider a parametric model X ∼ fθ,η, where
µ = θ ∈ IRk is the parameter of interest and η ∈ IRm is the nuisance parameter. As
the class of one-dimensional models, we choose the k + m models just varying one of
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the parameters: let a = (θ, η). For every δ ∈ IRk+m, we let {fa+εδ : ε} be a one-
dimensional submodel. The tangent space generated by these one-dimensional models
is the k + m-dimensional subspace of L2

0(FX) spanned by the score components of
h = (h1, . . . , hk) of θ and g = (g1, . . . , gm) of η. We can find the orthogonal complement
of the nuisance tangent space in two ways. Since the density of X is parametrized
naturally with µ and nuisance parameter η, we can calculate the nuisance space directly:
Tnuis(FX) = 〈g1, . . . , gm〉. Since Π(· | Tnuis(FX)) : L2

0(FX) → Tnuis(FX) is given by

Π(D | Tnuis(FX)) = E(D(X)g(X)>)E(g(X)g(X)>)−1g(X),

we have that the orthogonal complement of the nuisance tangent space is given by

T⊥nuis(FX) = {D(X)− E(D(X)g(X)>)E(g(X)g(X)>)−1g(X) : D ∈ L2
0(FX)}.

Moreover, the efficient score Seff (X) for µ is given by

Π(hj | T⊥nuis(FX))kj=1 = h(X)− E(h(X)g(X)>)E(g(X)g(X)>)−1g(X), (12)

and the efficient influence curve/canonical gradient is given by the standardized version
of the efficient score:

S∗eff (X) = E(SeffS
>
eff (X))−1Seff (X).

Let us now find T⊥nuis and the canonical gradient S∗eff in terms of the pathwise derivative.
We have

d

dε
µ(fa+εδ)

∣∣∣∣
ε=0

= (δ1, . . . , δk)
>,

while the score of fa+εδ at ε = 0 equals the linear combination δ>(h, g)> of the scores
and nuisance scores with coefficients given by δ. Thus, the gradients are all functions
` ∈ L2

0(FX)k that satisfy

(δ1, . . . , δk)
> = 〈`, δ>(h, g)>〉FX

.

To begin with, it follows that ` ⊥ 〈g〉 is orthogonal to the nuisance scores g1, . . . , gm.
The canonical gradient is the only gradient (and thus orthogonal to g1, . . . , gm), which
is also an element of the tangent space. It follows that the canonical gradient equals
S∗eff defined above. �

1.2 Review of efficiency theory

The orthogonal complement of the nuisance tangent space forms the basis of the gen-
eral estimating function approach presented in this book. It is also a space that is
fundamental to efficiency theory. We will now review some of these fundamental re-
sults (Bickel, Klaassen, Ritov, and Wellner, 1993). Firstly, we need to recall that an
estimator µn of µ is called regular relative to the given class of one-dimensional sub-
models {Fε,s : s ∈ S} if for ε = 1/

√
n the distribution of

√
n(µn − µ(Fε,s)), under

Xi ∼ Fε,s, i = 1, . . . , n, converges to a limit distribution Z that does not depend on s.
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Consider now a regular estimator relative to the class of one-dimensional submodels
{Fε,s : s ∈ S} and assume that it is asymptotically linear at FX with influence curve
IC(X | FX , µ):

µn − µ =
1

n

n∑
i=1

IC(Xi | FX , µ) + oP (1/
√
n).

Then
IC(X | FX , µ) ∈ T F,⊥,∗nuis (FX);

that is, the influence curve of a regular asymptotically linear estimator is a gradient.
This shows that the orthogonal complement of the nuisance tangent space identifies
asymptotically all regular asymptotically linear estimators of µ in the full data model
MF . More important to us, as heavily exploited in this book, the orthogonal comple-
ment of the nuisance tangent space T⊥nuis(FX) can be used to define a class of estimating
functions defining all estimators of interest.

The canonical gradient SF∗eff (X | FX) is of great importance since the asymptotic
variance of a regular asymptotically linear estimator of µ at FX is bounded below
by the variance of the canonical gradient, and a regular asymptotically linear (RAL)
estimator is efficient at FX if and only if it is asymptotically linear with influence curve
equal to the canonical gradient (i.e., efficient influence curve) at FX . The fact that
the variance of the efficient influence curve provides a lower bound for the asymptotic
variance of any RAL estimator can be understood as follows. For simplicity, consider
the situation where µ is univariate. Consider the one-dimensional model {Fε,s : ε} with
parameter ε, and note that the true parameter value is ε0 = 0. Note also that the score
of ε at ε0 equals s(X). The parameter of interest in this model is the following function
of ε: φ(ε) ≡ µ(Fε,s). The Cramer–Rao lower bound for the variance of an unbiased
estimator of φ(ε) ∈ IR at ε = ε0 = 0 equals(

d
dε
φ(ε)

∣∣
ε=0

)2

EFX
s2(X)

=
〈SF∗eff , s〉FX

〈s, s〉FX

, (13)

where we just noted that φ′(0) = d/dεµ(Fε,s)|ε=0. Of course, any regular asymptotically
linear estimator for the model M should have an influence curve with variance larger
than the Cramer–Rao lower bound (13) for the one-dimensional submodel Fε,s. This
is true for every possible one-dimensional submodel. As a consequence, any regular
asymptotically linear estimator for the model MF should have an influence curve
with variance larger than the supremum over all s ∈ T F (FX) of the one-dimensional
Cramer–Rao lower bounds (13) for the one-dimensional submodel Fε,s. By the Cauchy–
Schwarz inequality, it follows immediately that this supremum is attained at s = SF∗eff
with maximum ESF∗eff (X)2. This maximum is called the generalized Cramer–Rao lower
bound.

Thus, one can view SF∗eff,j as the score (index) of the one-dimensional submodel
that makes estimation of µj(FX), j = 1, . . . , k, most difficult, and its variance equals
the generalized Cramer–Rao lower bound. An estimator that achieves this bound of
a one-dimensional submodel must be efficient. We will actually view the canonical
gradients of µ at FX ∈MF as the basis for an optimal estimating function.
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1.3 Estimating functions.

Let us now discuss estimating functions. Consider a class of k-dimensional estimating

functions {Dh(X | µ, ρ) : h ∈ HF k} indexed by an index h ranging over a set HF k.
An estimating function Dh : X × {µ(FX), ρ(FX) : FX ∈ MF} is a function of X, the
parameter of interest µ, and possibly a nuisance parameter ρ = ρ(FX). An estimating
function is (uniformly) unbiased if

EFX
Dh(X | µ(FX), ρ(FX)) = 0 for all FX ∈MF .

Suppose now that the estimating functions are an element of the orthogonal comple-
ment of the nuisance tangent space in the sense that for all h ∈ HF

Dh(· | µ(FX), ρ(FX)) ∈ T F⊥nuis(FX) at all FX ∈MF . (14)

We showed in (10) that if ρ and µ are variation-independent parameters, then for
any one-dimensional model Fε,s, s ∈ T Fnuis(FX) (i.e., a one-dimensional model only
fluctuating the nuisance parameter so that µ(Fε,s)− µ(FX) = o(ε)) we have

d

dε
EFX

Dh(X | µ(FX), ρ(Fε,s))

∣∣∣∣
ε=0

= 0. (15)

This is a very nice property of an estimating function since it shows that it either does
not involve a nuisance parameter ρ or the derivative of the corresponding estimating
equation w.r.t. ρ (fixing µ) is zero asymptotically. Consequently, under regularity
conditions, for any decent consistent estimator ρn, the solution µn of the corresponding
estimating equation

0 =
n∑
i=1

Dg(Xi | µ, ρn)

will be asymptotically linear with influence curve

IC(X) = −

{
d

dµ
EFX

Dg(X | µ, ρ(FX))

∣∣∣∣
µ=µ(FX)

}−1

Dg(X | µ(FX), ρ(FX)). (16)

In other words, it will have the same influence curve as in the case where ρn = ρ(FX)
is known. This makes statistical inference straightforward, given that we already have
the estimating function. Notice that by (11) the influence curve IC(X) is indeed a
gradient. Finding a class of estimating functions satisfying (14) requires computing
T F,⊥nuis(FX) at all FX ∈MF .

Note that the definition of the orthogonal complement of the nuisance tangent space
depends on the class of submodels one had at the start. It is of interest to note that
if one chooses the class of one-dimensional submodels to be toosmall in the sense that
we are excluding certain scores that should have been in the tangent space, then the
orthogonal complement of the nuisance tangent space will not be truly orthogonal to
all directions that the model allows. As a consequence, in that case, the corresponding
estimating functions will not be orthogonal to all nuisance parameters in the sense
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that (15) is unequal to zero along certain one-dimensional submodels. There is nothing
wrong with using a class of estimating functions that are only orthogonal to a subspace
of the nuisance tangent space, but in that case one will not have the influence curve of
the corresponding estimators equal the standardized estimating function (16).

Example 1.5. Consider the previous example and let us choose too small a class
of one-dimensional submodels Fε,h by also requiring that the score h satisfy 〈h, f −
EFX

f(X)〉FX
= 0 for a given function f . The nuisance tangent space equals {h ∈

L2
0(FX) : h ⊥ 〈D∗, f − EFX

f〉} so that the orthogonal complement of the nuisance
tangent space equals all linear combinations of D∗ and f −EFX

f(X). Notice that the
estimating function D(X | µ, ρ) ≡ D∗(X | µ) + f(X) − ρ has a nuisance parameter
ρ(FX) ≡ EFX

f(X), and indeed its derivative w.r.t. ρ now is not zero: (15) now fails. In
fact, the solution of the estimating equation

∑n
i=1D(Xi | µ, ρn) with ρn = 1

n

∑n
i=1 f(Xi)

(the only nonparametric way of estimating the nuisance parameter) equals the empirical
cumulative distribution function at t0 that solves 0 =

∑n
i=1D

∗(Xi | µ). �

1.4 Orthogonal complement of a nuisance tangent space in an
observed data model

Consider the following class of parametric submodels through GY |X :

{(1 + εV (y))dG(y|x) : V ∈ L2
0(PFX ,G), E(V (Y ) | X) = 0}.

The tangent space of G in the model M(GCAR) generated by this class of submodels
is given by

TCAR(PFX ,G) = {v ∈ L2
0(PFX ,G) : E(v(Y ) | X) = 0}.

Let AFX
: L2

0(FX) → L2
0(PFX ,G) be the nonparametric score operator for FX :

AFX
(s)(Y ) = E(s(X) | Y ).

Let {ε → Fε,s : s ∈ SF} be the class of one-dimensional submodels in the full data
model with tangent space T F (FX). The one-dimensional submodels ε → Fε,s imply
one-dimensional submodels PFε,s,G with scores

AFX
(s)(Y ) = E(s(X) | Y ),

as proved in Gill (1989). Therefore, we have that the nuisance tangent space Tnuis(PFX ,G)
in model M(CAR) is given by

Tnuis(PFX ,G) = {A(snuis) : snuis ∈ T Fnuis(FX)} ⊕ TCAR(PFX ,G).

The next theorem provides a representation of T⊥nuis(PFX ,G). It will be useful to define
the adjoint A>G : L2

0(PFX ,G) → L2
0(FX) of AFX

, which is given by

A>G(V )(X) = E(V (Y ) | X).

Let IFX ,G : L2
0(FX) → L2

0(FX) be defined by IFX ,G = A>GAFX
.
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Theorem 1.1. Since FX , G is fixed in this theorem, we suppress possible dependence
on FX , G; In particular, U below can depend on both FX and G.

Suppose that U : T F,⊥nuis → L2
0(PFX ,G) satisfies E(U(D)(Y ) | X) = D(X) for all

D ∈ T F,⊥nuis. In the model M(CAR), we have

T⊥nuis = {U(D)− Π(U(D) | TCAR) : D ∈ T F,⊥nuis}. (17)

Specifically, for any V ∈ T⊥nuis, we have that DV ≡ A>(V ) ∈ T F,⊥nuis and

V = U(DV )− Π(U(DV ) | TCAR). (18)

We also note that in the model M(G) with G known, we have

T⊥nuis = {U(D) + Φ : D ∈ T F,⊥nuis,Φ ∈ TCAR}. (19)

Finally, we note that for a D ∈ R(I) (range of linear operator I : L2
0(FX) →

L2
0(PFX ,G))

U(D)− Π(U(D) | TCAR) = AI−1(D). (20)

How do the ideas from the course interact?

So far we have covered several different topics.

I: Empirical Process Theory

II: Derivatives in Function Space

III: The Functional Delta Method

IV: Estimating Equations

V: Efficiency Theory

The topics relate to each other as follows.

I −→ III,IV: Empirical process theory is a tool used for showing that the functional
delta method gives asymptotically linear estimates (along with Hadamard differentia-
bility of the function), and a tool for showing solutions to estimating equations are
asymptotically linear.

II −→ III,V: Hadamard differentiability is needed to show the functional delta method
gives asymptotically linear estimates. The smoothness condition needed to define reg-
ular parametric models (which form the foundation of efficiency theory) is Frechet
differentiability of the mapping from a Euclidean parameter to the square-root density
in L2(P ).
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III −→ IV: The functional delta method can be used to show that estimating equa-
tions give asymptotically linear estimators, as discussed in class, although this is not
a standard approach.

V −→ III,IV: Efficiency theory lets us examine estimators (coming from either the
functional delta method or estimating equations) to check whether they are efficient
(the asymptotically best regular estimator). Efficiency theory also provides the class of
all estimating functions of interest, through the orthogonal complement of the nuisance
tangent space.

The general methodology of van der Laan and Robins

The general methodology of van der Laan and Robins for estimating regular Euclidean
parameters with (or without) censored data can be summarized as follows.

Setup: O1, ..., On ∼ P ∈ M are n i.i.d. observations, the parameter of interest is
the pathwise differentiable ψ(P ), for ψ : M → Rk. The support for X and C in
the model M are denoted X and C. The full (unobserved) data is stored in X, and
O = Φ(X,C) for C a censoring variable that satisfies coarsening at random, so for
C(o) = {x ∈ X : o = Φ(x, c) for some c ∈ C}, dP (o|X = x1) = dP (o|X = x2) for
x1, x2 ∈ C(o).

i: Find T⊥nuis(FX) in the full-data world.

ii: Map this into T⊥nuis(P ) in the observed-data world.

iii: Estimate ψ(P ) by solving an estimating equation from T⊥nuis(P )

iv: If possible, look for the efficient estimate, so use the efficient score as the esti-
mating equation

Care needs to be taken in step (iii). Typically an estimating function can be written
as U(O|ψ(P ), η(P )), for η(P ) a nuisance parameter. We usually estimate this with ηn
from the data, and solve 0 = 1

n

∑n
i=1 U(Oi|ψn, ηn). In order to show that the resulting

estimate ψn is asymptotically linear for ψ(P ), we must typically show that the nuisance
parameter is estimated sufficiently quickly so that 1

n

∑n
i=1 U(Oi|ψn, η(P )) = oP (n−1/2).

Of course, we still need to check the usual regularity conditions of estimating equations
to show asymptotic linearity of the resulting estimate. That is, we must show ψn is
consistent, the map θ → EP [U(O|θ, η(P )] from Rk to Rk should have an invertible
derivative at θ = ψ(P ), and there is also an empirical process condition to check for
the functions {U(·|θ, η(P )) : ‖θ − ψ(P )‖ < ε}. The point is, obviously not every
function in T⊥nuis(P ) can be used as an estimating equation to give an asymptotically
linear estimate (eg. the zero vector is in this space), and we still have to verify the
regularity conditions after deciding to use a particular estimating equation.
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What’s so great about T⊥nuis(P )?

There are many methodologies out there for estimating parameters.

A: The plug-in principle. If M⊃ {all empirical distributions}, take ψn = ψ(Pn), for
Pn the empirical distribution.

B: Minimum distance estimates. For Π(Pn|M) the closest distribution in M (de-
fined with some metric) to Pn, take ψn = ψ(Π(Pn|M).

C: The method of sieves. Approximate M with an increasing nested sequence of
regular parametric models, and use the efficient estimate of ψ(P ) in one of those
submodels, where we increase the size of this submodel as we get more data.

D: Empirical/Modified likelihood. Use maximum likelihood to estimate ψ(P ) when
working in the random model Mn = {Q ∈M : Q({O1, ..., On)}) = 1}.

Some of these methodologies will be revisited when we study estimation of irregular
parameters. But for regular parameters, estimators formed in the ways listed above
(or in any other way) can be characterized by T⊥nuis(P ). A general result is that if ψn is
a regular asymptotically linear estimator of ψ(P ), then its influence curve is a gradient
(so in T⊥nuis(P )). The estimator then corresponds to using an estimating function from
T⊥nuis(P ) (the gradient premultiplied by the inverse of its covariance matrix). That is,
all regular asymptotically linear estimators are asymptotically equivalent in first-order
with estimators obtained from T⊥nuis(P ). It is for this reason that we consider T⊥nuis(P )
such a fundamental object.

Example 1.14, page 35, van der Laan, Robins, 2002,

Unified Methods for Censored Longitudinal Data and

Causality.

Example 1.6. (Repeated measures data with right-censoring; continuation
of Example ??) In the previous coverage of this example, we explained that, in
the full data world, globally efficient estimators are not practical but that attractive
locally efficient estimators exist. The latter was shown by showing that the orthogonal
complement of the nuisance tangent space in the full data model, which identifies all
estimating functions, was given by functions h(X∗)ε(α), which thus do not depend on
nuisance parameters. In the observed data modelM(CAR), defined by the restrictions
(??) and (??), we claim that it is even impossible to construct any practical estimators
at all.

In order to show this, we need to find the orthogonal complement of the nuisance
tangent space in the model M(CAR) and show that each of the elements of this space
depends on nuisance parameters that are very hard to estimate with normal sample
sizes. Note that in the observed data modelM(CAR), the nuisance parameter consists
of the full data nuisance parameter η and G.
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Let ∆ = I(C ≥ p) be the indicator that the subject does not drop out of the study
before p. We have that

P (∆ = 1 | X) = Ḡ(p | X) =

p−1∏
j=0

(1− λC(j | X)),

where Ḡ(t | X) ≡ P (C ≥ t | X). To begin with, we consider the inverse of probability
of censoring weighted estimating functions that are obtained by inverse weighting any
full data structure estimating function Dh(X | α) ≡ h(X∗)ε(α):{

IC0(Y | G,D) ≡ Dh(X | α)
∆

Ḡ(p | X)
: h

}
. (21)

Thus, given an estimator of the nuisance parameter Ḡ(p | X), one could use as esti-
mating equation for α:

0 =
1

n

n∑
i=1

h(X∗
i )εi(α)

∆i

Ḡn(p | X)
.

However, under the sole restriction CAR (??), estimation of Ḡ requires fitting non-
parametrically a multinomial regression of very high dimension. As a consequence,
these Horvitz–Thompson types of estimating functions do not result in practical es-
timators that are consistent and asymptotically normal (CAN) over the whole model
M(CAR). We have that (21) is a subset of the orthogonal complement of the nuisance
tangent space of η in the observed data model with Ḡ known. However, by CAR, the
tangent space TCAR(PFX ,G) of G only assuming (??) (i.e, CAR) is also contained in the
orthogonal complement of the nuisance tangent space of η in the observed data model
with G known. In fact, our representation theorem (Theorem 1.1) shows that adding
the tangent space TCAR(PFX ,G) to (21) yields the complete orthogonal complement
of the nuisance tangent space of η in the model with G known. The tangent space
TCAR(PFX ,G) of the conditional distribution G of C, given X, consists of all functions
of Y with conditional mean zero, given X, w.r.t. G.

We will now derive a representation of the tangent space TCAR(PFX ,G) and deter-
mine the projection onto TCAR(PFX ,G). Our derivation yields an elegant (and easy-
to-understand) proof of a very important fundamental result used throughout this
book. We will do this in the general situation where we have observed data (T̃ =
min(T,C),∆ = I(C ≥ T ), X̄(T̃ )) and the full data structure X̄(T ) = {X(s) : s ≤ T},
where T is possibly random: in the current example, we have T = p fixed. We
define C = ∞ if C ≥ T so that C is always observed. In the current example
this implies that C can never take value p and A(p) is a deterministic function of
A(p − 1). Let A(j) = I(C ≤ j) so that dA(j) = I(C = j), j = 0, . . . , p. Let
F(j) = (Ā(j − 1), X̄(min(j, C))) be the history observed up and including time j. Let
α(j | F(j)) = E(dA(j) | F(j)) be the probability that C = j, given the history F(j).
Note that

α(j | F(j)) = I(T̃ ≥ j)P (C = j | F(j), T̃ ≥ j) = I(T̃ ≥ j)λC(j | X̄(j)),
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where λC(j | X̄(j)) is the hazard of C, given X at time j, which by CAR only depends
on X through X̄(j). Under CAR, the G part of the likelihood of Y is given by

g(Ā(p− 1) | X) =

p−1∏
j=0

α(j | F(j))dA(j){1− α(j | F(j))}1−dA(j). (22)

Since α(j | F(j))dA(j){1 − α(j | F(j))}1−dA(j) is just a Bernoulli likelihood for the
random variable dA(j) with probability α(j | F(j)), it follows that the tangent space
of α(j | F(j)) is the space of all functions of (dA(j),F(j)) with conditional mean zero,
given F(j). Straightforward algebra shows that any such function can be written as

V (dA(j),F(j))− E(V | F(j)) = {V (1,F(j))− V (0,F(j))} (23)

×{dA(j)− α(j | F(j))}.

Thus, the tangent space of the parameter α(j | F(j)) equals

TCAR,j ≡ {H(F(j)){dA(j)− α(j | F(j))} : H},

where H ranges over all functions of F(j) for which each element of TCAR,j has finite
variance. By factorization of the likelihood (22), we have that

TCAR(PFX ,G) = TCAR,0 ⊕ TCAR,1 . . .⊕ TCAR,p−1. (24)

Equivalently,

TCAR(PFX ,G) =

{
p−1∑
j=0

H(j,F(j))dMG(j) : H

}
,

where
dMG(j) = I(C = j)− λC(j | X̄(j))I(T̃ ≥ j).

Note that I(C = j) = I(C = j,∆ = 0) for j < p.
Thus, the complete orthogonal complement of the nuisance tangent space of η in

the observed data model with G known is given by:{
h(X∗)ε(α)

∆

Ḡ(p | X)
−

p−1∑
j=0

H(j,F(j))dMG(j) : h,H

}
. (25)

This shows that in the observed data model with G known we have access to a rich class
(25) of estimating functions for α without a nuisance parameter, namely any choice of
h,H provides an estimating function for α.

The orthogonal complement of the nuisance parameter (η,G) in M(CAR) is the
subspace of (25) consisting of the functions in (25) which are also orthogonal to G.
Thus this space is given by:{

h(X∗)ε(α)
∆

Ḡ(p | X)
−

p−1∑
j=0

Hopt,h(j,F(j))dMG(j) : h,H

}
, (26)
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where Hopt,h is chosen so that
∑p

j=0Hopt,h(j, X̄(j))dMG(j) equals the projection of

h(X∗)ε(α) ∆
Ḡ(p|X)

onto TCAR(PFX ,G) in the Hilbert space L2
0(PFX ,G).

We will now derive this projection. By representation (24) of TCAR, we have that

Π(IC0(Y | G,D) | TCAR) =

p−1∑
j=0

Π(IC0(Y | G,D) | TCAR,j).

The projection onto TCAR,j is obtained by first projecting on all functions of (dA(j),F(j))
and subsequently subtracting its conditional expectation, given F(j),

Π(IC0(D) | TCAR,j) = E(IC0(D) | dA(j),F(j))

−E(E(IC0(D) | dA(j),F(j)) | F(j)),

where we used short hand notation for IC0(Y | G,D). By (23), this can be written as

{E(IC0(D) | dA(j) = 1,F(j))− E(IC0(D) | dA(j) = 0,F(j))} dMG(j).

Finally, we note that E(IC0(D) | dA(j) = 1,F(j)) = 0 since dA(j) = 1 implies ∆ = 0
for j ≤ p− 1. This proves that

Π(IC0(D) | TCAR) = −
p−1∑
j=0

{E(IC0(D) | dA(j) = 0,F(j))} dMG(j).

This can be represented as
∑p−1

j=0 Hopt,D(j,F(j))dMG(j) with

Hopt,D(j,F(j)) = −E(IC0(Y | G,D) | C > j, X̄(j))

= − 1

Ḡ(j + 1 | X)
E(Dh(X | α) | X̄(j), C > j),

where, by definition, Ḡ(j + 1 | X) = P (C > j | X). We also note that by CAR
QX,h ≡ E(Dh(X | α) | X̄(j), C > j) = E(Dh(X | α) | X̄(j)) which is thus a parameter
of the full data distribution FX .

We conclude that the orthogonal complement of the nuisance parameter (η,G) in
the model M(CAR) is given by{

h(X∗)ε(α)
∆

Ḡ(p | X)
−

p∑
j=0

QX,h(j, X̄(j))
dMG(j)

Ḡ(j + 1 | X)
: h

}
. (27)

Each of the elements, indexed by h, in this orthogonal complement of the nuisance
tangent space implies an estimating function for α (and a corresponding influence
curve) with nuisance parameters being G and the full data parameter QX,h. Without
additional assumptions on the full data model and censoring mechanism, neither of
these two nuisance parameters can be reasonably well-estimated in practice. This
shows that no practical estimators exist in model M(CAR).

Above, we formally proved the following fundamental results for the general right-
censored data structure (T̃ ,∆, X̄(T̃ )) for the case where censoring is discrete:
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Theorem 1.2. Let R(t) = I(T ≤ t) for a time variable T . Let X(t) be a time-
dependent process including R(t). Let X = X̄(T ) be the full data. We have observed
data Y = (T̃ = min(C, T ),∆ = I(T ≤ C), X̄(T̃ )), where C is a univariate discrete
variable with conditional distribution G(· | X), given X. Let A(t) = I(C ≤ t), where we
define C = ∞ if C ≥ T so that C is always observed. Let F(t) = (Ā(t−), X̄(min(t, C)))
be the history observed up to time t.

Assume CAR on G: E(dA(t) | Ā(t−), X) = E(dA(t) | F(t)) or equivalently, for
t ≤ T ,

λC|X(t | X) ≡ P (C = t | C ≥ t,X) = m(t, X̄(t))

for some measurable function m. Then, the tangent space TCAR(PFX ,G) of G is given
by

TCAR(PFX ,G) =

{∫
H(u,F(u))dMG(u) : H

}
∩ L2

0(PFX ,G),

where dMG(u) = I(C ∈ du,∆ = 0)− I(T̃ ≥ u)λC|X(du | X). For any function V (Y ),
we have that Π(V | TCAR) is given by∫

{E(V (Y ) | dA(u) = 1,F(u))− E(V (Y ) | dA(u) = 0,F(u))} dMG(u).

Remark: For the data structure Y of theorem 1.2 any variable V (Y ) can be
written as ∆d1(X) + (1−∆)V2(X̄(C), C) for some functions d1 and V2. It follows that
E[V (Y ) | dA(u) = 1,F (u)] = V2(X̄(u), u) is actually a deterministic function of V (Y ).

If G is actually continuous, then the G part of the likelihood of Y is defined as
the partial likelihood of A(t), w.r.t. the left-continuous history F(t−) as in Andersen,
Borgan, Gill and Keiding (1993), if in theorem 1.2 we replace F (u) and F (t) by F (u−)
and F (t−).

The formulas for TCAR and the projection onto TCAR in Theorem 1.2 can be applied
to the continuous case as well, but the proof of the representation of TCAR involves
calculating the scores from this partial likelihood, and the projection formula needs to
be formally defined and proved, taking into account possible measurability conditions
needed to define the conditional expectations. A formal treatment of the continuous
case is given in van der Vaart (2001). Since the latter is beyond the scope and purpose
of this book, we will avoid stating these continuous projection results as theorems, but
still use them to define the corresponding estimating functions. �

2 Robustness of Estimating Functions

2.1 Robustness of estimating functions against misspecifica-
tion of linear convex nuisance parameters.

We showed above that an estimating function that is an element of the orthogonal com-
plement of the nuisance tangent space in the sense defined by (14) has a corresponding
estimating equation with first derivative (directional) w.r.t. its nuisance parameter
equal to zero. In fact, we will now prove that if the data-generating distribution is
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linear in the nuisance parameter ρ of the estimating function and the nuisance pa-
rameter space is convex, then, at the misspecified nuisance parameter, the estimating
function remains unbiased and orthogonal to the tangent space generated by this pa-
rameter. Similar type results have been obtained by Bickel (1982), Bickel, Klaassen,
Ritov, and Wellner (1993), Newey (1990), and Robins, Rotnitzky, van der Laan (2000).
The following lemma is a slight modification (including now an orthogonality result)
of the result in van der Laan, Yu (2001), but uses essentially the same proof.

Lemma 2.1. Consider an estimating function D(X | µ, ρ) (i.e., a mapping X ×
{(µ(FX), ρ(FX)) : FX ∈ MF} → IR) that satisfies (14). Assume that µ is pathwise
differentiable at each F ∈ MF along a F -specific class of one-dimensional models in-
cluding nuisance score lines Fε = εF1 + (1 − ε)F ∈ MF indexed by a set of F1’s with
1) µ(F1) = µ(F ), 2) d/dεµ(Fε)|ε=0 = 0, and 3) dF1/dF < ∞ (i.e., being uniformly
bounded). In addition, we assume that these classes of lines satisfy the following “con-
nectivity” property: If we have a line εF + (1 − ε)F1 in the F1-specific class, and a
line εF ∗

1 + (1− ε)F in the F -specific class (i.e., µ(F ) = µ(F1) = µ(F ∗
1 ), dF/dF1 <∞,

dF ∗
1 /dF < ∞, and the pathwise derivative of µ at F1 and F , respectively, equals zero

along these lines), then the line εF ∗
1 +(1− ε)F1 is an element of the F1-specific class as

well; in other words, beyond the properties 1 and 3 which follow directly it also satisfies
property 2. Let T1(FX) be the tangent space of this class of one-dimensional submodels
at FX .

Let F1 ∈MF be such that dF/dF1 <∞, µ(F1) = µ(F ), and d/dεµ(εF + (1− ε)F1)|ε=0 =
0. Then

EFX
D(X | µ(FX), ρ(F1)) = 0.

In fact,
D(X | µ(FX), ρ(F1)) ∈ T1(FX)⊥.

We note that the connectivity assumption is a natural assumption on the classes of
lines. An important corollary of this lemma is that, if the data-generating distribution
FX can be parametrized as Pµ,η with η → Pµ,η linear, η ranging over a convex parameter

space, and ρ a function of η, then D(X | µ(FX), ρ1) ∈ T F,⊥nuis(FX) for all ρ1. (Note that
the connectivity assumption obviously holds for models with such variation independent
parametrizations). This implies that one can treat ρ as the index h of the estimating
function.

Note also that, if ρ = (ρ1, ρ2) with ρ1, ρ2 being variation-independent (w.r.t. to each
other and to µ) linear convex parameters (i.e., satisfying the assumptions of Lemma
2.1), then double application of Lemma 2.1 in the model first with ρ1 known and then
with ρ2 known, respectively, yields the following double robustness property of the
estimating function D:

EFX
D(X | µ(FX), ρ1, ρ2) = 0 if either ρ1 = ρ1(FX) or ρ2 = ρ2(FX).

However, note that in this case D(X | µ(FX), ρ1, ρ2(FX)) (or D(X | µ(FX), ρ1(FX), ρ2))
is not necessarily still orthogonal to the tangent space corresponding with just varying
ρ2 (or just varying ρ1).
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Lemma 2.1 requires that FX � F1, but it follows straightforwardly that, if ρ(F1)
can be approximated by a ρ(F1m with FX � F1m so that application of this lemma
yields EFX

D(X | µ(FX), ρ(F1m)) = 0, and D(X | µ(FX), ρ(F1m)) converges to D(X |
µ, ρ(F1)) in L2(FX), then we will have EFX

D(X | µ(FX), ρ(F1)) = 0 as well.
Proof of lemma. Let F1, F be as in the lemma. Thus µ(F1) = µ(F ). Then, F1,ε,s =
εF + (1 − ε)F1 is a one-dimensional submodel of MF with score s = d(F − F1)/dF1

satisfying

0 =
d

dε
µ(F1,ε,s)

∣∣∣∣
ε=0

.

By the fact that µ is pathwise differentiable along F1,ε,s at F1, we have for any gradient
`(X | µ(F1), ρ(F1))

0 =

∫
`(x | µ(F1), ρ(F1))

d(F − F1)

dF1

dF1 =

∫
`(x | µ(F1), ρ(F1))dF (x).

Since a standardized version of D(· | µ(F1), ρ(F1)) is a gradient, this implies also that
for any such pair F1, F

0 =

∫
D(x | µ(F1), ρ(F1))dF (x) =

∫
D(x | µ(F ), ρ(F1))dF (x),

which proves the protection of unbiasedness as stated in the lemma.
This protection will now also provide us with the claimed orthogonality. Any score

in T1(FX) is of the form d(F ∗
1 −F )/dF for some F ∗

1 with dF ∗
1 /dF <∞, µ(F ∗

1 ) = µ(F ),
and d/dε µ(εF ∗

1 + (1− ε)F )|ε=0 = 0. We have∫
`(X | µ, ρ(F1))

d(F ∗
1 − F )

dF
dF =

∫
`(X | µ, ρ(F1))d(F

∗
1 − F )

=

∫
`(X | µ, ρ(F1))dF

∗
1 −

∫
`(X | µ, ρ(F1))dF.

We just proved that the second term equals zero. By the same proof, the first term
equals zero if dF ∗

1 /dF1 <∞, and d/dε µ(εF ∗
1 + (1− ε)F1)|ε=0 = 0. We have dF ∗

1 /dF1 =
(dF ∗

1 /dF ) ∗ (dF/dF1) < ∞, which proves the first condition. The pathwise derivative
conditions holds by our connectivity assumption on the class of lines. This completes
the proof. �
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