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Overview of the issues to be addressed

e Question of interest: defining a causal effect on a survival outcome
e Data structures: terminology and notations

e Survival causal parameter of interest: describing survival causal ef-
fects with MSMs

e How to identify and estimate MSM parameters: naive approach,
IPTW estimator, assumptions, implementation, intuitive under-
standing

e Illustration with simulations

e Generalization of the approach to censored data and other estima-
tors

—— Illustration with an example
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Question of interest

What is the causal effect of a treatment on an survival outcome
marginally or conditionally on a covariate?

e At the unit level, a causal effect can be defined by comparing
treatment-specific survival outcomes.

e At the population level, it can be defined by the influence of a
change in treatment values on the (conditional) distribution of
treatment-specific survival outcomes or counterfactuals.

Two types of causal questions of interest corresponding with two data
structures:

e point-treatment data structure: the treatment of interest is a ran-
dom variable occurring at one time point.

e lONngitudinal data structure: the treatment of interest is a stochastic
process, i.e. a collection of random variables measured over time.

—— T he framework and notations for longitudinal data is more general.
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Illustration

Causal effect of a chemotherapy drug on patients’ survival.

The average marginal causal effect of the chemotherapy is the
difference between:1) the average survival time if all patients are
treated with chemotherapy and 2) the average survival time if all
patients are not treated with chemotherapy.

The average adjusted causal effect of the chemotherapy per strata of
sex in the population is define by the two following differences:

e 1) the average survival time if all male patients are treated with
chemotherapy and 2) the average survival time if all male patients
are not treated with chemotherapy.

e 1) the average survival time if all female patients are treated with
chemotherapy and 2) the average survival time if all female patients
are not treated with chemotherapy.

—— T his example can be used as a longitudinal data example as well
(different drug doses assigned over time).

Romain Neugebauer - 4



Data structures

Whether the data are point-treatment data or longitudinal data, one
can define two data sets:

e the full data: data from the ideal experiment in which all counter-
factuals are collected for every subject.
—— It is typically impossible to conduct such an ideal experiment in
practice.

e the observed data: data that can be observed in practice in which
one unique outcome is typically measured under one treatment per
subject.

—— It corresponds with a subset of the full data.

Note that causal effects are defined using the full data but only the
observed data is available to evaluate these causal effects.

—— Notations used to represent both data sets for both point-
treatment and longitudinal data structures.
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Statistical framework for causal inference

Notations:
e Observed treatment:

— for point-treatment data: A,
possibly multivariate, i.e., A= (Ay,...,Ag)

— for longitudinal data (history): A(t) fort=0,...,T —1:
A=AT—-1)=(A0),..., AT - 1)),
generalize notation for treatment up to time ¢: A(t)

— Possible outcome values a or a
— Space of all possible treatments: A, i.e., aora € A
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Statistical framework for causal inference

e Observed covariate:

—for point-treatment data: baseline covariates W O V(possibly
multivariate) and Y (¢)=I(T <t) for t =0,...,T":

Y(T) = (Y(0),...,Y(T)),
— for longitudinal data: L(t)= (W (t),Y(t)=1(T <t)) fort=0,...,T":
L(T) = (L(0),..., L(T)),

where W(0) D V is/are baseline covariate(s).

Note that the survival outcome of interest, 7', is included in the
observed covariate through the variables Y (¢) and that there is no

censoring.
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Statistical framework for causal inference

e Counterfactuals:

"variables/processes observed contrary to the fact, i.e. under a
treatments which are not the observed treatment’ .

By extension, treatment-specific variables/processes:

— for point treatment data: T, and Y, (¢t)=1(T, <t) fort=0,...,Ty,
— for longitudinal data: Ty and Lg(t) for t =0,..., Ty, i.e. Lg(Ty)

Note the difference between E(T | A=a) and E(1Ty).
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Statistical framework for causal inference

e Full data = ideal data: X ~ Fy
— for point treatment data: X = (W, (Ya4(Ty))4eca) OF @ simpler repre-
sentation is X = (W, (T4)4ec4)
— for longitudinal data: X = (L4(Ts))aea OF @ simpler representation
is X = (Ta, Wa(Ta))aca
In particular, it includes all treatment-specific outcomes and baseline
covariates.
e Observed data = only available data: O ~ P
— for point treatment data: O = (W, A,Y(T)) or a simpler represen-
tation is O = (W, A, T)
— for longitudinal data:
O = (L(T), AT = 1)) = (L(0), A(0), L(1), A(1),..., A(T" — 1), L(T)) or a
simpler representation is O = (T, W (T), A(T ))

— The longitudinal data notations cover the point treatment
data notations (more general)
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Defining the survival causal parameter of interest

A (conditional) survival causal effect can be described by the fol-
lowing parameters:

e at the subject/unit level by log T, —logTg,,

e at the population level by
— Bay,as(V) = E(logTg, —logTg, | V) = E(logTg, | V) — E(logTa, | V),
—651@2(‘/) = median(logTal | V)—median(logTal ‘ V},
— etc.

If V=0, B4, ,a, describe marginal causal effects unlike (g, 4,(V) describe
adjusted causal effects.

Typically it is the average causal effect that is of interest and it is
described by the parameter:

6* _ (ﬂ&l,a2<v>)‘/,d1,&2’ where ﬁa1,a2<v> = E(log le | V) — E(log Td2 | V)
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Defining the survival causal parameter of interest

Such a parameter §* is typically very high-dimensional and nonpara-
metric estimation of (3 is then not possible with finite sample data or
suffer from poor practical performance: curse of dimensionality.

A parametric model can be used to summarize a very high-dimensional
parameter into a lower-dimensional parameter of interest £.

A parametric Marginal Structural Model describes average causal ef-
fects with a lower-dimensional parameter (¢ using the mean feature of
the counterfactuals distribution:

E(logTa | V) =m(a,V | B),
e.g. 8= (B1,0,03) and m(a,V | B) = By + Bimean(a) + 3V + Bsmean(a)V.

—— 3 is the survival causal parameter of interest
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Defining the survival causal parameter of interest

We proposed to describe survival causal effects by comparing mean
treatment-specific log'l; per strata of V however survival causal effects
can be described by comparing other mean treatment-specific survival
outcomes like:

e the hazard of survival per strata of V: \g(t | V)=P(Ig=t|1Tg >t V)
e the survival function per strata of V: Su(t | V) =1m;<(1 - Xa(j | V).

Similarly , Marginal Structural Models modelling can be used to model
these other expected treatment-specific outcomes and describe the
average survival causal effects using different parameters of interest.

— In this presentation, we only consider MSMs of the type F(logTj |
V)=m(a,V | B) but results can be generalized to more general MSMs
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Naive approach to MSM estimation

Consider the estimation problem of the parameter § = (0, 3;) defined
by the following MSM for a point-treatment data set:

E(logTy) = By + ra

A naive estimation approach would consist in 1) performing a simple
regression of logT" on A using the association model oy + ajA and 2)
interpreting the resulting estimate & as an estimate of 3. This is
saying that E(logT | A =a) = E(logT,) for all a € A.

This equality holds only if treatment A is randomized, i.e. A L (Yy)uea-

In most cases, the effect of A on 71" is confounded and treatment A is
thus not randomized. Using this naive estimation procedure leads to
bias estimation of £.

—— This type of bias is similar to the bias induced by informative
censoring, i.e. by missing data
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How to estimate 5: a missing data approach

The observed data O can be linked to the ideal data one would have
liked to observe to investigate the average causal effect of interest.

The ideal data corresponds with n i.i.d. observations of the full data
X = (La(Ta)aes = (Ta, WalTe))gena ~ Fx and we can link X to O as
follows:

0 = ®(4,X) = (AT ~ 1), Lyig_1)(T)) = (AT — 1), Ty Wip_p)(T).

The problem of estimating 5 using O can thus be treated as a missing
data problem. The estimation methods developed for missing data
problems can thus be applied to the estimation of causal parameters
defined by MSMSs.

—— Certain conditions are necessary, at least in practice, for the iden-
tification of 8 with O.
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Conditions for identification of 3
e Correct MSM specification: 3 e R E(logT; | V)=m(a,V | B)
e Existence of counterfactuals

e Time ordering: Lg(t) = Lg_1)(t) (causal graph not deductible from
the data only)

e Consistency assumption: L(t) = L 4(¢)

e Sequential Randomization Assumption (SRA):
Alt) L X | A(t —1), L(¢)

T his assumption is called the No Unobserved Confounder assump-
tion or Randomization assumption (RA) for point-treatment data.
It is necessary in practice for identification of § when one is not
willing to make specific assumptions about F'x likely not to hold in
most cases.

— Under these assumptions, it is possible to estimate (# consistently
with the available data O (under additional assumptions).
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The Sequential Randomization Assumption

The SRA implies that:
g(At) | Alt — 1), X) = g(A(t) | A(t — 1), L(1)).
(<= g(A| X)=g(A| W) for point-treatment data, i.e. RA)

If the SRA is violated, it might still be possible to identify 8 in certain
specific situations (instrumental variables).

However if one does not want to make assumptions only valid in
certain specific scenarios likely not to hold, the SRA is required for
identification of a causal effect.

Under the SRA we thus have:

gAT—1) | X) = I g(A(t) | At — 1), L(#)
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Intuition behind the SRA

Intuitively the SRA means that: the way a treatment variable is
assigned at each time point in Reality using the full data, also
called the treatment mechanism, should only depend on PAST
OBSERVED variables, i.e. in particular it cannot depend on
unobserved confounders.

The SRA implies that we had enough information to predict at each
time point the treatment received (based one the full data) using
the past observed variables at that time only. Thus, the SRA is an
assumption dealing with the information available in the observed data.

It can be viewed as one of the minimal assumptions that insures
that there is enough information in the observed data O to identify a
parameter (like 3) defined using the unavailable full data X.
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Estimating 5: a missing data approach

Three estimators developed for missing data problems can be used to
estimate causal effects like 8 under the SRA assumption. Under the
SRA assumption, the likelihood factorizes into two parts:

g part

£(0) = FLO) 11, FILG) | LG~ 1. Al = 1)) (4] X).
QFy
Fy part

Under the SRA, we denote the distribution of O, P, with PFX79'

Thus the three estimators of 3 can rely on models for different part
of the observed likelihood:

e Inverse Probability of Treatment Weighted (IPTW) estimator
e G-computation (G-comp) estimator

e Double Robust (DR) estimator.

— We focus on the IPTW estimator of 3 in this presentation.
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The IPTW estimator: definition

Definition:
The IPTW estimating function for g with nuisance parameter g is

defined as:
h(A, V)e(B)
Dp(O]g,.8)=— =
g(A | X)
Note that the IPTW estimating function is indeed a function of the

observed data under the SRA.
We denote the estimator of the nuisance parameter g with g,.

where ¢(3) =logT — m(A,V | §).

The IPTW estimator of 5 is defined as the solution of the estimating
equation associated with the observed data O and the IPTW estimat-

ing function at gy,
n
> Dnploi | gn, 8) =0,

where o; for + = 1,...,n represents the n i.i.d. observations in the
observed data.
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Property of the IPTW estimator

The IPTW estimating function is unbiased at £:

if the Experimental Treatment Assignment (ETA) assumption holds:

mai; — 0 — ae
"at each time point, treatments are NOT DETERMINISTICALLY

assigned according to observed covariate values”

—— More than required to hold in theory: it cannot be practically
violated

If g, is a consistent estimator of g and the ETA assumption holds for
g then the IPTW estimator is asymptotically linear and thus consistent.

—— the consistency of the IPTW estimator relies on correct specifi-
cation of the g part of the likelihood AND the ETA assumption
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Property of the IPTW estimator

Proof:

Epyy, DO 9.0) = EE|

where €5(8) = log Ty —m(a,V | 8) and g(8) = € 4(3) under the consistency
assumption.
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The IPTW estimator: implementation

The IPTW estimate of 5 can be obtained in practice by performing
a weighted least squares regression of Y on A and V using the MSM
and weights inversely proportional to the treatment mechanism:

MAV) sra AA, V)

w(A, V) = —
gn(A | X) tiﬁ@ gn(A(t) | A(t — 1), L(t))

)

where X can be any non-null function of A and V.

It can indeed be shown that the resulting estimate is a solution of the
IPTW estimating equation where h(a, V') = A(a, V)dd@m(d,\/ | 3).
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The IPTW estimator: implementation

Robins, Hernan and Brumback recommended the following choice for
A: A(A, V) =g (A| V) where g is the conditional distribution of A given
V:

e to improve the efficiency of the IPTW estimator (more stable
weights)

e tOo be consistent with the naive estimation approach we would use

if we know the treatment is randomized per strata of V.
!/

The resulting weights are called stabilized weights: w(A,V) = gngﬁ“)‘?).

In addition, it was shown, see van der Laan and Robins (2002), that
g should always be estimated even when ¢ is known. As a result, the
IPTW estimator may gain in efficiency by taking into account possible
empirical confounding, without loss of consistency.
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The IPTW estimator: implementation

Do not trust the standard errors provided by the weighted regression
routines in standard statistical package.

They assume the weights provided are known, i.e. not estimated.
The resulting confidence intervals would be conservative.

Use the bootstrap to obtain correct standard errors and confidence

intervals or calculate them with the influence curve of the IPTW es-
timator you used.

Romain Neugebauer - 24



The IPTW estimator

An intuitive understanding of the IPTW estimator?

The IPTW estimator can be viewed intuitively as a "smart” weighted
regression accomplishing two steps simultaneously:

1. Modify the original data such that the treatment is randomized in
the ghost data artificially created by the weights: importance of the
SRA, ETA assumptions and the models for the weights.

2. Estimate § using a simple (unweighted) mean regression of Y on A
using the MSM and the ghost data.
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Importance of the ETA assumption: violation AND
practical violation

Illustration by simulations: Yy (unobserved)

/

W MSM: E(logT,) =2 — ba
e
A 2T
To obtain one data set with N observations, repeat N times:
1. Generate Y ~ U[—10, 10]
2. Generate W ~ N(Kgl, 1)
3. Generate A using g(A | W)

4. Generate logT ~ N (2 +4Y) — 5A,1)

One generates 500 data sets for each g considered and each sample
size N =100, 200, 300, 400, 500, 1000, 2000, 100000.

— For each data set, one estimates § = (2,5) using the IPTW and
reports the mean estimates per ¢ and N considered.
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Binary treatment and logistic treatment mechanism

pl=logit(1+1.5w) p2=logit(0.5+w)
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— the ETA assumption becomes less practically violated as we go
from model 1 to 4
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slope

Comparison of the four estimators: bias
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Categorical treatment and multinomial treatment
mechanism

pPO=1/[1l+exp(0.5w)+exp(l.5w)] pl=pO0exp(0.5w)
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—— the ETA assumption is practically violated
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intercept

Comparison of the four estimators: bias
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Continuous treatment and gaussian treatment
mechanism
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—— The IPTW estimates are still biased at N = 100000!
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Importance of the ETA assumption

These simulation results should convince you of the impor-
tance of checking the validity of the ETA assumption in practice.

A visual check of the validity of the ETA assumption can be
performed by plotting y) the observed treatment or predicted
probability of treatment against x) the linear part of the
treatment mechanism model.

The resulting plot should demonstrate that for any value of the
covariates in the treatment mechanism model all treatment reg-
imen are possible with a probability different enough from O or 1
(e.g. > 0.1 and <0.9).

Romain Neugebauer - 32



Generalization of the approach to censored data

We assume in this presentation that all events are observed for
all subject in the data set.

In practice, censoring makes the problem more complex however
the approach and the tools used to estimate causal effects
remain the same.

Example of right censoring:

Censoring, (C, is treated as another treatment variable and
the counterfactuals are defined using a joint treatment A(t) =
(A1(t), Aa(t)) where Aq(t) corresponds with the treatment of inter-
est and As(t) = I(C <t) and the MSM becomes:

E(]Og TC_Ll,C_LQZO ’ V) — m<d17 4 ’ 5)
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Other estimators

With or without censoring, the IPTW estimator fails to provide
unbiased estimates of causal parameters of interest when the
ETA assumption is violated or practically violated.

Other estimators should then be used. Two alternate estimators
are possible: the G-computation and Double Robust (DR) esti-
mators. They rely on the other part of the likelihood: the Fy
part (and on the g part of the likelihood as well for the DR).
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